Evaluate
\frac{40x^{3}+36x^{2}-10x+1}{20\left(4x^{2}-1\right)}
Factor
\frac{40x^{3}+36x^{2}-10x+1}{20\left(4x^{2}-1\right)}
Graph
Share
Copied to clipboard
\frac{x}{\frac{2x}{x}-\frac{1}{x}}-\frac{1}{8x+4}+\frac{1}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{x}{\frac{2x-1}{x}}-\frac{1}{8x+4}+\frac{1}{5}
Since \frac{2x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{xx}{2x-1}-\frac{1}{8x+4}+\frac{1}{5}
Divide x by \frac{2x-1}{x} by multiplying x by the reciprocal of \frac{2x-1}{x}.
\frac{x^{2}}{2x-1}-\frac{1}{8x+4}+\frac{1}{5}
Multiply x and x to get x^{2}.
\frac{x^{2}}{2x-1}-\frac{1}{4\left(2x+1\right)}+\frac{1}{5}
Factor 8x+4.
\frac{x^{2}\times 4\left(2x+1\right)}{4\left(2x-1\right)\left(2x+1\right)}-\frac{2x-1}{4\left(2x-1\right)\left(2x+1\right)}+\frac{1}{5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-1 and 4\left(2x+1\right) is 4\left(2x-1\right)\left(2x+1\right). Multiply \frac{x^{2}}{2x-1} times \frac{4\left(2x+1\right)}{4\left(2x+1\right)}. Multiply \frac{1}{4\left(2x+1\right)} times \frac{2x-1}{2x-1}.
\frac{x^{2}\times 4\left(2x+1\right)-\left(2x-1\right)}{4\left(2x-1\right)\left(2x+1\right)}+\frac{1}{5}
Since \frac{x^{2}\times 4\left(2x+1\right)}{4\left(2x-1\right)\left(2x+1\right)} and \frac{2x-1}{4\left(2x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8x^{3}+4x^{2}-2x+1}{4\left(2x-1\right)\left(2x+1\right)}+\frac{1}{5}
Do the multiplications in x^{2}\times 4\left(2x+1\right)-\left(2x-1\right).
\frac{5\left(8x^{3}+4x^{2}-2x+1\right)}{20\left(2x-1\right)\left(2x+1\right)}+\frac{4\left(2x-1\right)\left(2x+1\right)}{20\left(2x-1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(2x-1\right)\left(2x+1\right) and 5 is 20\left(2x-1\right)\left(2x+1\right). Multiply \frac{8x^{3}+4x^{2}-2x+1}{4\left(2x-1\right)\left(2x+1\right)} times \frac{5}{5}. Multiply \frac{1}{5} times \frac{4\left(2x-1\right)\left(2x+1\right)}{4\left(2x-1\right)\left(2x+1\right)}.
\frac{5\left(8x^{3}+4x^{2}-2x+1\right)+4\left(2x-1\right)\left(2x+1\right)}{20\left(2x-1\right)\left(2x+1\right)}
Since \frac{5\left(8x^{3}+4x^{2}-2x+1\right)}{20\left(2x-1\right)\left(2x+1\right)} and \frac{4\left(2x-1\right)\left(2x+1\right)}{20\left(2x-1\right)\left(2x+1\right)} have the same denominator, add them by adding their numerators.
\frac{40x^{3}+20x^{2}-10x+5+16x^{2}+8x-8x-4}{20\left(2x-1\right)\left(2x+1\right)}
Do the multiplications in 5\left(8x^{3}+4x^{2}-2x+1\right)+4\left(2x-1\right)\left(2x+1\right).
\frac{40x^{3}+36x^{2}-10x+1}{20\left(2x-1\right)\left(2x+1\right)}
Combine like terms in 40x^{3}+20x^{2}-10x+5+16x^{2}+8x-8x-4.
\frac{40x^{3}+36x^{2}-10x+1}{80x^{2}-20}
Expand 20\left(2x-1\right)\left(2x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}