Solve for x
x = -\frac{51}{10} = -5\frac{1}{10} = -5.1
Graph
Share
Copied to clipboard
6x-12\left(4-\frac{2x}{3}\right)=24x+3
Multiply both sides of the equation by 12, the least common multiple of 2,3,4.
6x-12\left(4-\frac{2x}{3}\right)-24x=3
Subtract 24x from both sides.
3\left(6x-12\left(4-\frac{2x}{3}\right)\right)-72x=9
Multiply both sides of the equation by 3.
9\left(6x-12\left(4-\frac{2x}{3}\right)\right)-216x=27
Multiply both sides of the equation by 3.
9\left(6x-48+12\times \frac{2x}{3}\right)-216x=27
Use the distributive property to multiply -12 by 4-\frac{2x}{3}.
9\left(6x-48+4\times 2x\right)-216x=27
Cancel out 3, the greatest common factor in 12 and 3.
9\left(6x-48+8x\right)-216x=27
Multiply 4 and 2 to get 8.
9\left(14x-48\right)-216x=27
Combine 6x and 8x to get 14x.
126x-432-216x=27
Use the distributive property to multiply 9 by 14x-48.
-90x-432=27
Combine 126x and -216x to get -90x.
-90x=27+432
Add 432 to both sides.
-90x=459
Add 27 and 432 to get 459.
x=\frac{459}{-90}
Divide both sides by -90.
x=-\frac{51}{10}
Reduce the fraction \frac{459}{-90} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}