Solve for x
x>-\frac{7}{2}
Graph
Share
Copied to clipboard
4x-7<7+8x
Multiply both sides of the equation by 8, the least common multiple of 2,8. Since 8 is positive, the inequality direction remains the same.
4x-7-8x<7
Subtract 8x from both sides.
-4x-7<7
Combine 4x and -8x to get -4x.
-4x<7+7
Add 7 to both sides.
-4x<14
Add 7 and 7 to get 14.
x>\frac{14}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x>-\frac{7}{2}
Reduce the fraction \frac{14}{-4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}