Solve for x
x=-\frac{3}{7}\approx -0.428571429
Graph
Share
Copied to clipboard
\left(3x-1\right)x-\left(-1-3x\right)\left(3-x\right)=0x
Variable x cannot be equal to any of the values -\frac{1}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-1\right)\left(3x+1\right), the least common multiple of 1+3x,1-3x,9x^{2}-1.
3x^{2}-x-\left(-1-3x\right)\left(3-x\right)=0x
Use the distributive property to multiply 3x-1 by x.
3x^{2}-x-\left(-3-8x+3x^{2}\right)=0x
Use the distributive property to multiply -1-3x by 3-x and combine like terms.
3x^{2}-x+3+8x-3x^{2}=0x
To find the opposite of -3-8x+3x^{2}, find the opposite of each term.
3x^{2}+7x+3-3x^{2}=0x
Combine -x and 8x to get 7x.
7x+3=0x
Combine 3x^{2} and -3x^{2} to get 0.
7x+3=0
Anything times zero gives zero.
7x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-3}{7}
Divide both sides by 7.
x=-\frac{3}{7}
Fraction \frac{-3}{7} can be rewritten as -\frac{3}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}