Factor
\frac{yx^{2}\left(3yx^{2}-4\right)}{6}
Evaluate
\frac{yx^{2}\left(3yx^{2}-4\right)}{6}
Share
Copied to clipboard
factor(\frac{y^{2}x^{4}}{2}-\frac{2x^{3}y}{3x})
Cancel out yx^{2} in both numerator and denominator.
factor(\frac{y^{2}x^{4}}{2}-\frac{2yx^{2}}{3})
Cancel out x in both numerator and denominator.
factor(\frac{3y^{2}x^{4}}{6}-\frac{2\times 2yx^{2}}{6})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{y^{2}x^{4}}{2} times \frac{3}{3}. Multiply \frac{2yx^{2}}{3} times \frac{2}{2}.
factor(\frac{3y^{2}x^{4}-2\times 2yx^{2}}{6})
Since \frac{3y^{2}x^{4}}{6} and \frac{2\times 2yx^{2}}{6} have the same denominator, subtract them by subtracting their numerators.
factor(\frac{3y^{2}x^{4}-4yx^{2}}{6})
Do the multiplications in 3y^{2}x^{4}-2\times 2yx^{2}.
yx^{2}\left(3yx^{2}-4\right)
Consider 3y^{2}x^{4}-4yx^{2}. Factor out yx^{2}.
\frac{y\left(3yx^{2}-4\right)x^{2}}{6}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}