Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{3}-2x}{3x+2}+\frac{3x+2}{3x+2}+\frac{2}{x-4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3x+2}{3x+2}.
\frac{x^{3}-2x+3x+2}{3x+2}+\frac{2}{x-4}
Since \frac{x^{3}-2x}{3x+2} and \frac{3x+2}{3x+2} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x+2}{3x+2}+\frac{2}{x-4}
Combine like terms in x^{3}-2x+3x+2.
\frac{\left(x^{3}+x+2\right)\left(x-4\right)}{\left(x-4\right)\left(3x+2\right)}+\frac{2\left(3x+2\right)}{\left(x-4\right)\left(3x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+2 and x-4 is \left(x-4\right)\left(3x+2\right). Multiply \frac{x^{3}+x+2}{3x+2} times \frac{x-4}{x-4}. Multiply \frac{2}{x-4} times \frac{3x+2}{3x+2}.
\frac{\left(x^{3}+x+2\right)\left(x-4\right)+2\left(3x+2\right)}{\left(x-4\right)\left(3x+2\right)}
Since \frac{\left(x^{3}+x+2\right)\left(x-4\right)}{\left(x-4\right)\left(3x+2\right)} and \frac{2\left(3x+2\right)}{\left(x-4\right)\left(3x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}-4x^{3}+x^{2}-4x+2x-8+6x+4}{\left(x-4\right)\left(3x+2\right)}
Do the multiplications in \left(x^{3}+x+2\right)\left(x-4\right)+2\left(3x+2\right).
\frac{x^{4}-4x^{3}+x^{2}+4x-4}{\left(x-4\right)\left(3x+2\right)}
Combine like terms in x^{4}-4x^{3}+x^{2}-4x+2x-8+6x+4.
\frac{x^{4}-4x^{3}+x^{2}+4x-4}{3x^{2}-10x-8}
Expand \left(x-4\right)\left(3x+2\right).
\frac{x^{3}-2x}{3x+2}+\frac{3x+2}{3x+2}+\frac{2}{x-4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3x+2}{3x+2}.
\frac{x^{3}-2x+3x+2}{3x+2}+\frac{2}{x-4}
Since \frac{x^{3}-2x}{3x+2} and \frac{3x+2}{3x+2} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x+2}{3x+2}+\frac{2}{x-4}
Combine like terms in x^{3}-2x+3x+2.
\frac{\left(x^{3}+x+2\right)\left(x-4\right)}{\left(x-4\right)\left(3x+2\right)}+\frac{2\left(3x+2\right)}{\left(x-4\right)\left(3x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+2 and x-4 is \left(x-4\right)\left(3x+2\right). Multiply \frac{x^{3}+x+2}{3x+2} times \frac{x-4}{x-4}. Multiply \frac{2}{x-4} times \frac{3x+2}{3x+2}.
\frac{\left(x^{3}+x+2\right)\left(x-4\right)+2\left(3x+2\right)}{\left(x-4\right)\left(3x+2\right)}
Since \frac{\left(x^{3}+x+2\right)\left(x-4\right)}{\left(x-4\right)\left(3x+2\right)} and \frac{2\left(3x+2\right)}{\left(x-4\right)\left(3x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}-4x^{3}+x^{2}-4x+2x-8+6x+4}{\left(x-4\right)\left(3x+2\right)}
Do the multiplications in \left(x^{3}+x+2\right)\left(x-4\right)+2\left(3x+2\right).
\frac{x^{4}-4x^{3}+x^{2}+4x-4}{\left(x-4\right)\left(3x+2\right)}
Combine like terms in x^{4}-4x^{3}+x^{2}-4x+2x-8+6x+4.
\frac{x^{4}-4x^{3}+x^{2}+4x-4}{3x^{2}-10x-8}
Expand \left(x-4\right)\left(3x+2\right).