Solve for x
x=2
x=-2
Graph
Share
Copied to clipboard
\left(x+1\right)^{2}\left(x^{3}-1\right)-\left(x-1\right)^{2}\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)^{2}\left(x+1\right)^{2}, the least common multiple of \left(x-1\right)^{2},\left(x+1\right)^{2}.
\left(x^{2}+2x+1\right)\left(x^{3}-1\right)-\left(x-1\right)^{2}\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-\left(x-1\right)^{2}\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Use the distributive property to multiply x^{2}+2x+1 by x^{3}-1.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-\left(x^{2}-2x+1\right)\left(x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-\left(x^{5}+x^{2}-2x^{4}-2x+x^{3}+1\right)=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Use the distributive property to multiply x^{2}-2x+1 by x^{3}+1.
x^{5}-x^{2}+2x^{4}-2x+x^{3}-1-x^{5}-x^{2}+2x^{4}+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
To find the opposite of x^{5}+x^{2}-2x^{4}-2x+x^{3}+1, find the opposite of each term.
-x^{2}+2x^{4}-2x+x^{3}-1-x^{2}+2x^{4}+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Combine x^{5} and -x^{5} to get 0.
-2x^{2}+2x^{4}-2x+x^{3}-1+2x^{4}+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Combine -x^{2} and -x^{2} to get -2x^{2}.
-2x^{2}+4x^{4}-2x+x^{3}-1+2x-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Combine 2x^{4} and 2x^{4} to get 4x^{4}.
-2x^{2}+4x^{4}+x^{3}-1-x^{3}-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Combine -2x and 2x to get 0.
-2x^{2}+4x^{4}-1-1=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Combine x^{3} and -x^{3} to get 0.
-2x^{2}+4x^{4}-2=6\left(x-1\right)^{2}\left(x+1\right)^{2}
Subtract 1 from -1 to get -2.
-2x^{2}+4x^{4}-2=6\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-2x^{2}+4x^{4}-2=6\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
-2x^{2}+4x^{4}-2=\left(6x^{2}-12x+6\right)\left(x^{2}+2x+1\right)
Use the distributive property to multiply 6 by x^{2}-2x+1.
-2x^{2}+4x^{4}-2=6x^{4}-12x^{2}+6
Use the distributive property to multiply 6x^{2}-12x+6 by x^{2}+2x+1 and combine like terms.
-2x^{2}+4x^{4}-2-6x^{4}=-12x^{2}+6
Subtract 6x^{4} from both sides.
-2x^{2}-2x^{4}-2=-12x^{2}+6
Combine 4x^{4} and -6x^{4} to get -2x^{4}.
-2x^{2}-2x^{4}-2+12x^{2}=6
Add 12x^{2} to both sides.
10x^{2}-2x^{4}-2=6
Combine -2x^{2} and 12x^{2} to get 10x^{2}.
10x^{2}-2x^{4}-2-6=0
Subtract 6 from both sides.
10x^{2}-2x^{4}-8=0
Subtract 6 from -2 to get -8.
-2t^{2}+10t-8=0
Substitute t for x^{2}.
t=\frac{-10±\sqrt{10^{2}-4\left(-2\right)\left(-8\right)}}{-2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -2 for a, 10 for b, and -8 for c in the quadratic formula.
t=\frac{-10±6}{-4}
Do the calculations.
t=1 t=4
Solve the equation t=\frac{-10±6}{-4} when ± is plus and when ± is minus.
x=1 x=-1 x=2 x=-2
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x=-2 x=2
Variable x cannot be equal to any of the values 1,-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}