Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\left(y^{2}+27\right)\left(x^{3}+12x\right)=x\left(x^{2}+12\right)\left(y^{3}+27y\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy\left(x^{2}+12\right)\left(y^{2}+27\right), the least common multiple of x^{3}+12x,y^{3}+27y.
\left(y^{3}+27y\right)\left(x^{3}+12x\right)=x\left(x^{2}+12\right)\left(y^{3}+27y\right)
Use the distributive property to multiply y by y^{2}+27.
y^{3}x^{3}+12y^{3}x+27yx^{3}+324yx=x\left(x^{2}+12\right)\left(y^{3}+27y\right)
Use the distributive property to multiply y^{3}+27y by x^{3}+12x.
y^{3}x^{3}+12y^{3}x+27yx^{3}+324yx=\left(x^{3}+12x\right)\left(y^{3}+27y\right)
Use the distributive property to multiply x by x^{2}+12.
y^{3}x^{3}+12y^{3}x+27yx^{3}+324yx=x^{3}y^{3}+27x^{3}y+12xy^{3}+324yx
Use the distributive property to multiply x^{3}+12x by y^{3}+27y.
y^{3}x^{3}+12y^{3}x+27yx^{3}+324yx-x^{3}y^{3}=27x^{3}y+12xy^{3}+324yx
Subtract x^{3}y^{3} from both sides.
12y^{3}x+27yx^{3}+324yx=27x^{3}y+12xy^{3}+324yx
Combine y^{3}x^{3} and -x^{3}y^{3} to get 0.
12y^{3}x+27yx^{3}+324yx-27x^{3}y=12xy^{3}+324yx
Subtract 27x^{3}y from both sides.
12y^{3}x+324yx=12xy^{3}+324yx
Combine 27yx^{3} and -27x^{3}y to get 0.
12y^{3}x+324yx-12xy^{3}=324yx
Subtract 12xy^{3} from both sides.
324yx=324yx
Combine 12y^{3}x and -12xy^{3} to get 0.
324yx-324yx=0
Subtract 324yx from both sides.
0=0
Combine 324yx and -324yx to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus 0
Variable x cannot be equal to 0.
y\left(y^{2}+27\right)\left(x^{3}+12x\right)=x\left(x^{2}+12\right)\left(y^{3}+27y\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy\left(x^{2}+12\right)\left(y^{2}+27\right), the least common multiple of x^{3}+12x,y^{3}+27y.
\left(y^{3}+27y\right)\left(x^{3}+12x\right)=x\left(x^{2}+12\right)\left(y^{3}+27y\right)
Use the distributive property to multiply y by y^{2}+27.
y^{3}x^{3}+12y^{3}x+27yx^{3}+324yx=x\left(x^{2}+12\right)\left(y^{3}+27y\right)
Use the distributive property to multiply y^{3}+27y by x^{3}+12x.
y^{3}x^{3}+12y^{3}x+27yx^{3}+324yx=\left(x^{3}+12x\right)\left(y^{3}+27y\right)
Use the distributive property to multiply x by x^{2}+12.
y^{3}x^{3}+12y^{3}x+27yx^{3}+324yx=x^{3}y^{3}+27x^{3}y+12xy^{3}+324yx
Use the distributive property to multiply x^{3}+12x by y^{3}+27y.
y^{3}x^{3}+12y^{3}x+27yx^{3}+324yx-x^{3}y^{3}=27x^{3}y+12xy^{3}+324yx
Subtract x^{3}y^{3} from both sides.
12y^{3}x+27yx^{3}+324yx=27x^{3}y+12xy^{3}+324yx
Combine y^{3}x^{3} and -x^{3}y^{3} to get 0.
12y^{3}x+27yx^{3}+324yx-27x^{3}y=12xy^{3}+324yx
Subtract 27x^{3}y from both sides.
12y^{3}x+324yx=12xy^{3}+324yx
Combine 27yx^{3} and -27x^{3}y to get 0.
12y^{3}x+324yx-12xy^{3}=324yx
Subtract 12xy^{3} from both sides.
324yx=324yx
Combine 12y^{3}x and -12xy^{3} to get 0.
324yx-324yx=0
Subtract 324yx from both sides.
0=0
Combine 324yx and -324yx to get 0.
\text{true}
Compare 0 and 0.
y\in \mathrm{R}
This is true for any y.
y\in \mathrm{R}\setminus 0
Variable y cannot be equal to 0.