Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x^{2}-x-12\right)\left(2x^{2}+15x+18\right)}{\left(2x^{2}+9x+9\right)\left(x^{2}-36\right)}
Divide \frac{x^{2}-x-12}{2x^{2}+9x+9} by \frac{x^{2}-36}{2x^{2}+15x+18} by multiplying \frac{x^{2}-x-12}{2x^{2}+9x+9} by the reciprocal of \frac{x^{2}-36}{2x^{2}+15x+18}.
\frac{\left(x-4\right)\left(x+3\right)\left(x+6\right)\left(2x+3\right)}{\left(x-6\right)\left(x+3\right)\left(x+6\right)\left(2x+3\right)}
Factor the expressions that are not already factored.
\frac{x-4}{x-6}
Cancel out \left(x+3\right)\left(x+6\right)\left(2x+3\right) in both numerator and denominator.
\frac{\left(x^{2}-x-12\right)\left(2x^{2}+15x+18\right)}{\left(2x^{2}+9x+9\right)\left(x^{2}-36\right)}
Divide \frac{x^{2}-x-12}{2x^{2}+9x+9} by \frac{x^{2}-36}{2x^{2}+15x+18} by multiplying \frac{x^{2}-x-12}{2x^{2}+9x+9} by the reciprocal of \frac{x^{2}-36}{2x^{2}+15x+18}.
\frac{\left(x-4\right)\left(x+3\right)\left(x+6\right)\left(2x+3\right)}{\left(x-6\right)\left(x+3\right)\left(x+6\right)\left(2x+3\right)}
Factor the expressions that are not already factored.
\frac{x-4}{x-6}
Cancel out \left(x+3\right)\left(x+6\right)\left(2x+3\right) in both numerator and denominator.