Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x^{2}-x-12\right)\left(5x+35\right)}{\left(16-4x\right)\left(x^{2}+2x-3\right)}
Divide \frac{x^{2}-x-12}{16-4x} by \frac{x^{2}+2x-3}{5x+35} by multiplying \frac{x^{2}-x-12}{16-4x} by the reciprocal of \frac{x^{2}+2x-3}{5x+35}.
\frac{5\left(x-4\right)\left(x+3\right)\left(x+7\right)}{4\left(x-1\right)\left(x+3\right)\left(-x+4\right)}
Factor the expressions that are not already factored.
\frac{-5\left(x+3\right)\left(x+7\right)\left(-x+4\right)}{4\left(x-1\right)\left(x+3\right)\left(-x+4\right)}
Extract the negative sign in -4+x.
\frac{-5\left(x+7\right)}{4\left(x-1\right)}
Cancel out \left(x+3\right)\left(-x+4\right) in both numerator and denominator.
\frac{-5x-35}{4x-4}
Expand the expression.
\frac{\left(x^{2}-x-12\right)\left(5x+35\right)}{\left(16-4x\right)\left(x^{2}+2x-3\right)}
Divide \frac{x^{2}-x-12}{16-4x} by \frac{x^{2}+2x-3}{5x+35} by multiplying \frac{x^{2}-x-12}{16-4x} by the reciprocal of \frac{x^{2}+2x-3}{5x+35}.
\frac{5\left(x-4\right)\left(x+3\right)\left(x+7\right)}{4\left(x-1\right)\left(x+3\right)\left(-x+4\right)}
Factor the expressions that are not already factored.
\frac{-5\left(x+3\right)\left(x+7\right)\left(-x+4\right)}{4\left(x-1\right)\left(x+3\right)\left(-x+4\right)}
Extract the negative sign in -4+x.
\frac{-5\left(x+7\right)}{4\left(x-1\right)}
Cancel out \left(x+3\right)\left(-x+4\right) in both numerator and denominator.
\frac{-5x-35}{4x-4}
Expand the expression.