Evaluate
\frac{2x^{4}+x^{3}+8x^{2}+28x+16}{\left(x+1\right)\left(x+4\right)x^{2}}
Expand
\frac{2x^{4}+x^{3}+8x^{2}+28x+16}{\left(x+1\right)\left(x+4\right)x^{2}}
Graph
Share
Copied to clipboard
\frac{x^{2}-x}{x^{2}+x}+\frac{3x+2}{x^{2}+x}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Multiply x and x to get x^{2}.
\frac{x\left(x-1\right)}{x\left(x+1\right)}+\frac{3x+2}{x^{2}+x}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Factor the expressions that are not already factored in \frac{x^{2}-x}{x^{2}+x}.
\frac{x-1}{x+1}+\frac{3x+2}{x^{2}+x}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Cancel out x in both numerator and denominator.
\frac{x-1}{x+1}+\frac{3x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Factor x^{2}+x.
\frac{\left(x-1\right)x}{x\left(x+1\right)}+\frac{3x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x\left(x+1\right) is x\left(x+1\right). Multiply \frac{x-1}{x+1} times \frac{x}{x}.
\frac{\left(x-1\right)x+3x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Since \frac{\left(x-1\right)x}{x\left(x+1\right)} and \frac{3x+2}{x\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-x+3x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Do the multiplications in \left(x-1\right)x+3x+2.
\frac{x^{2}+2x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Combine like terms in x^{2}-x+3x+2.
\frac{\left(x^{2}+2x+2\right)\left(x+4\right)}{x\left(x+1\right)\left(x+4\right)}+\frac{\left(3x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(x+4\right)}-\frac{2x^{2}-4}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right) and x+4 is x\left(x+1\right)\left(x+4\right). Multiply \frac{x^{2}+2x+2}{x\left(x+1\right)} times \frac{x+4}{x+4}. Multiply \frac{3x+2}{x+4} times \frac{x\left(x+1\right)}{x\left(x+1\right)}.
\frac{\left(x^{2}+2x+2\right)\left(x+4\right)+\left(3x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(x+4\right)}-\frac{2x^{2}-4}{x^{2}}
Since \frac{\left(x^{2}+2x+2\right)\left(x+4\right)}{x\left(x+1\right)\left(x+4\right)} and \frac{\left(3x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+4x^{2}+2x^{2}+8x+2x+8+3x^{3}+3x^{2}+2x^{2}+2x}{x\left(x+1\right)\left(x+4\right)}-\frac{2x^{2}-4}{x^{2}}
Do the multiplications in \left(x^{2}+2x+2\right)\left(x+4\right)+\left(3x+2\right)x\left(x+1\right).
\frac{4x^{3}+11x^{2}+12x+8}{x\left(x+1\right)\left(x+4\right)}-\frac{2x^{2}-4}{x^{2}}
Combine like terms in x^{3}+4x^{2}+2x^{2}+8x+2x+8+3x^{3}+3x^{2}+2x^{2}+2x.
\frac{\left(4x^{3}+11x^{2}+12x+8\right)x}{\left(x+1\right)\left(x+4\right)x^{2}}-\frac{\left(2x^{2}-4\right)\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right)\left(x+4\right) and x^{2} is \left(x+1\right)\left(x+4\right)x^{2}. Multiply \frac{4x^{3}+11x^{2}+12x+8}{x\left(x+1\right)\left(x+4\right)} times \frac{x}{x}. Multiply \frac{2x^{2}-4}{x^{2}} times \frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}.
\frac{\left(4x^{3}+11x^{2}+12x+8\right)x-\left(2x^{2}-4\right)\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)x^{2}}
Since \frac{\left(4x^{3}+11x^{2}+12x+8\right)x}{\left(x+1\right)\left(x+4\right)x^{2}} and \frac{\left(2x^{2}-4\right)\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{4}+11x^{3}+12x^{2}+8x-2x^{4}-10x^{3}-8x^{2}+4x^{2}+20x+16}{\left(x+1\right)\left(x+4\right)x^{2}}
Do the multiplications in \left(4x^{3}+11x^{2}+12x+8\right)x-\left(2x^{2}-4\right)\left(x+1\right)\left(x+4\right).
\frac{2x^{4}+x^{3}+8x^{2}+28x+16}{\left(x+1\right)\left(x+4\right)x^{2}}
Combine like terms in 4x^{4}+11x^{3}+12x^{2}+8x-2x^{4}-10x^{3}-8x^{2}+4x^{2}+20x+16.
\frac{2x^{4}+x^{3}+8x^{2}+28x+16}{x^{4}+5x^{3}+4x^{2}}
Expand \left(x+1\right)\left(x+4\right)x^{2}.
\frac{x^{2}-x}{x^{2}+x}+\frac{3x+2}{x^{2}+x}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Multiply x and x to get x^{2}.
\frac{x\left(x-1\right)}{x\left(x+1\right)}+\frac{3x+2}{x^{2}+x}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Factor the expressions that are not already factored in \frac{x^{2}-x}{x^{2}+x}.
\frac{x-1}{x+1}+\frac{3x+2}{x^{2}+x}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Cancel out x in both numerator and denominator.
\frac{x-1}{x+1}+\frac{3x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Factor x^{2}+x.
\frac{\left(x-1\right)x}{x\left(x+1\right)}+\frac{3x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x\left(x+1\right) is x\left(x+1\right). Multiply \frac{x-1}{x+1} times \frac{x}{x}.
\frac{\left(x-1\right)x+3x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Since \frac{\left(x-1\right)x}{x\left(x+1\right)} and \frac{3x+2}{x\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-x+3x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Do the multiplications in \left(x-1\right)x+3x+2.
\frac{x^{2}+2x+2}{x\left(x+1\right)}+\frac{3x+2}{x+4}-\frac{2x^{2}-4}{x^{2}}
Combine like terms in x^{2}-x+3x+2.
\frac{\left(x^{2}+2x+2\right)\left(x+4\right)}{x\left(x+1\right)\left(x+4\right)}+\frac{\left(3x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(x+4\right)}-\frac{2x^{2}-4}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right) and x+4 is x\left(x+1\right)\left(x+4\right). Multiply \frac{x^{2}+2x+2}{x\left(x+1\right)} times \frac{x+4}{x+4}. Multiply \frac{3x+2}{x+4} times \frac{x\left(x+1\right)}{x\left(x+1\right)}.
\frac{\left(x^{2}+2x+2\right)\left(x+4\right)+\left(3x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(x+4\right)}-\frac{2x^{2}-4}{x^{2}}
Since \frac{\left(x^{2}+2x+2\right)\left(x+4\right)}{x\left(x+1\right)\left(x+4\right)} and \frac{\left(3x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+4x^{2}+2x^{2}+8x+2x+8+3x^{3}+3x^{2}+2x^{2}+2x}{x\left(x+1\right)\left(x+4\right)}-\frac{2x^{2}-4}{x^{2}}
Do the multiplications in \left(x^{2}+2x+2\right)\left(x+4\right)+\left(3x+2\right)x\left(x+1\right).
\frac{4x^{3}+11x^{2}+12x+8}{x\left(x+1\right)\left(x+4\right)}-\frac{2x^{2}-4}{x^{2}}
Combine like terms in x^{3}+4x^{2}+2x^{2}+8x+2x+8+3x^{3}+3x^{2}+2x^{2}+2x.
\frac{\left(4x^{3}+11x^{2}+12x+8\right)x}{\left(x+1\right)\left(x+4\right)x^{2}}-\frac{\left(2x^{2}-4\right)\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right)\left(x+4\right) and x^{2} is \left(x+1\right)\left(x+4\right)x^{2}. Multiply \frac{4x^{3}+11x^{2}+12x+8}{x\left(x+1\right)\left(x+4\right)} times \frac{x}{x}. Multiply \frac{2x^{2}-4}{x^{2}} times \frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}.
\frac{\left(4x^{3}+11x^{2}+12x+8\right)x-\left(2x^{2}-4\right)\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)x^{2}}
Since \frac{\left(4x^{3}+11x^{2}+12x+8\right)x}{\left(x+1\right)\left(x+4\right)x^{2}} and \frac{\left(2x^{2}-4\right)\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{4}+11x^{3}+12x^{2}+8x-2x^{4}-10x^{3}-8x^{2}+4x^{2}+20x+16}{\left(x+1\right)\left(x+4\right)x^{2}}
Do the multiplications in \left(4x^{3}+11x^{2}+12x+8\right)x-\left(2x^{2}-4\right)\left(x+1\right)\left(x+4\right).
\frac{2x^{4}+x^{3}+8x^{2}+28x+16}{\left(x+1\right)\left(x+4\right)x^{2}}
Combine like terms in 4x^{4}+11x^{3}+12x^{2}+8x-2x^{4}-10x^{3}-8x^{2}+4x^{2}+20x+16.
\frac{2x^{4}+x^{3}+8x^{2}+28x+16}{x^{4}+5x^{3}+4x^{2}}
Expand \left(x+1\right)\left(x+4\right)x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}