Solve for x
x=9
x=0
Graph
Share
Copied to clipboard
\frac{1}{3}x^{2}-2x=x
Divide each term of x^{2}-6x by 3 to get \frac{1}{3}x^{2}-2x.
\frac{1}{3}x^{2}-2x-x=0
Subtract x from both sides.
\frac{1}{3}x^{2}-3x=0
Combine -2x and -x to get -3x.
x\left(\frac{1}{3}x-3\right)=0
Factor out x.
x=0 x=9
To find equation solutions, solve x=0 and \frac{x}{3}-3=0.
\frac{1}{3}x^{2}-2x=x
Divide each term of x^{2}-6x by 3 to get \frac{1}{3}x^{2}-2x.
\frac{1}{3}x^{2}-2x-x=0
Subtract x from both sides.
\frac{1}{3}x^{2}-3x=0
Combine -2x and -x to get -3x.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, -3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±3}{2\times \frac{1}{3}}
Take the square root of \left(-3\right)^{2}.
x=\frac{3±3}{2\times \frac{1}{3}}
The opposite of -3 is 3.
x=\frac{3±3}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{6}{\frac{2}{3}}
Now solve the equation x=\frac{3±3}{\frac{2}{3}} when ± is plus. Add 3 to 3.
x=9
Divide 6 by \frac{2}{3} by multiplying 6 by the reciprocal of \frac{2}{3}.
x=\frac{0}{\frac{2}{3}}
Now solve the equation x=\frac{3±3}{\frac{2}{3}} when ± is minus. Subtract 3 from 3.
x=0
Divide 0 by \frac{2}{3} by multiplying 0 by the reciprocal of \frac{2}{3}.
x=9 x=0
The equation is now solved.
\frac{1}{3}x^{2}-2x=x
Divide each term of x^{2}-6x by 3 to get \frac{1}{3}x^{2}-2x.
\frac{1}{3}x^{2}-2x-x=0
Subtract x from both sides.
\frac{1}{3}x^{2}-3x=0
Combine -2x and -x to get -3x.
\frac{\frac{1}{3}x^{2}-3x}{\frac{1}{3}}=\frac{0}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\left(-\frac{3}{\frac{1}{3}}\right)x=\frac{0}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}-9x=\frac{0}{\frac{1}{3}}
Divide -3 by \frac{1}{3} by multiplying -3 by the reciprocal of \frac{1}{3}.
x^{2}-9x=0
Divide 0 by \frac{1}{3} by multiplying 0 by the reciprocal of \frac{1}{3}.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{9}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{9}{2} x-\frac{9}{2}=-\frac{9}{2}
Simplify.
x=9 x=0
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}