Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-6x+9}{x^{2}-1}\times \frac{2x^{2}-2}{x-3}\times \frac{4x}{2x\left(x+1\right)}
Factor the expressions that are not already factored in \frac{4x}{2x^{2}+2x}.
\frac{x^{2}-6x+9}{x^{2}-1}\times \frac{2x^{2}-2}{x-3}\times \frac{2}{x+1}
Cancel out 2x in both numerator and denominator.
\frac{\left(x^{2}-6x+9\right)\left(2x^{2}-2\right)}{\left(x^{2}-1\right)\left(x-3\right)}\times \frac{2}{x+1}
Multiply \frac{x^{2}-6x+9}{x^{2}-1} times \frac{2x^{2}-2}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-6x+9\right)\left(2x^{2}-2\right)\times 2}{\left(x^{2}-1\right)\left(x-3\right)\left(x+1\right)}
Multiply \frac{\left(x^{2}-6x+9\right)\left(2x^{2}-2\right)}{\left(x^{2}-1\right)\left(x-3\right)} times \frac{2}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{2^{2}\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}{\left(x-3\right)\left(x-1\right)\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{2^{2}\left(x-3\right)}{x+1}
Cancel out \left(x-3\right)\left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{4x-12}{x+1}
Expand the expression.
\frac{x^{2}-6x+9}{x^{2}-1}\times \frac{2x^{2}-2}{x-3}\times \frac{4x}{2x\left(x+1\right)}
Factor the expressions that are not already factored in \frac{4x}{2x^{2}+2x}.
\frac{x^{2}-6x+9}{x^{2}-1}\times \frac{2x^{2}-2}{x-3}\times \frac{2}{x+1}
Cancel out 2x in both numerator and denominator.
\frac{\left(x^{2}-6x+9\right)\left(2x^{2}-2\right)}{\left(x^{2}-1\right)\left(x-3\right)}\times \frac{2}{x+1}
Multiply \frac{x^{2}-6x+9}{x^{2}-1} times \frac{2x^{2}-2}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-6x+9\right)\left(2x^{2}-2\right)\times 2}{\left(x^{2}-1\right)\left(x-3\right)\left(x+1\right)}
Multiply \frac{\left(x^{2}-6x+9\right)\left(2x^{2}-2\right)}{\left(x^{2}-1\right)\left(x-3\right)} times \frac{2}{x+1} by multiplying numerator times numerator and denominator times denominator.
\frac{2^{2}\left(x-1\right)\left(x+1\right)\left(x-3\right)^{2}}{\left(x-3\right)\left(x-1\right)\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{2^{2}\left(x-3\right)}{x+1}
Cancel out \left(x-3\right)\left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{4x-12}{x+1}
Expand the expression.