Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-3\right)^{2}}{\left(x-3\right)\left(-x-3\right)}-\frac{2x-6}{x^{2}+3x}
Factor the expressions that are not already factored in \frac{x^{2}-6x+9}{9-x^{2}}.
\frac{x-3}{-x-3}-\frac{2x-6}{x^{2}+3x}
Cancel out x-3 in both numerator and denominator.
\frac{x-3}{-x-3}-\frac{2x-6}{x\left(x+3\right)}
Factor x^{2}+3x.
\frac{\left(x-3\right)\left(-1\right)x}{x\left(x+3\right)}-\frac{2x-6}{x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -x-3 and x\left(x+3\right) is x\left(x+3\right). Multiply \frac{x-3}{-x-3} times \frac{-x}{-x}.
\frac{\left(x-3\right)\left(-1\right)x-\left(2x-6\right)}{x\left(x+3\right)}
Since \frac{\left(x-3\right)\left(-1\right)x}{x\left(x+3\right)} and \frac{2x-6}{x\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+3x-2x+6}{x\left(x+3\right)}
Do the multiplications in \left(x-3\right)\left(-1\right)x-\left(2x-6\right).
\frac{-x^{2}+x+6}{x\left(x+3\right)}
Combine like terms in -x^{2}+3x-2x+6.
\frac{-x^{2}+x+6}{x^{2}+3x}
Expand x\left(x+3\right).
\frac{\left(x-3\right)^{2}}{\left(x-3\right)\left(-x-3\right)}-\frac{2x-6}{x^{2}+3x}
Factor the expressions that are not already factored in \frac{x^{2}-6x+9}{9-x^{2}}.
\frac{x-3}{-x-3}-\frac{2x-6}{x^{2}+3x}
Cancel out x-3 in both numerator and denominator.
\frac{x-3}{-x-3}-\frac{2x-6}{x\left(x+3\right)}
Factor x^{2}+3x.
\frac{\left(x-3\right)\left(-1\right)x}{x\left(x+3\right)}-\frac{2x-6}{x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -x-3 and x\left(x+3\right) is x\left(x+3\right). Multiply \frac{x-3}{-x-3} times \frac{-x}{-x}.
\frac{\left(x-3\right)\left(-1\right)x-\left(2x-6\right)}{x\left(x+3\right)}
Since \frac{\left(x-3\right)\left(-1\right)x}{x\left(x+3\right)} and \frac{2x-6}{x\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+3x-2x+6}{x\left(x+3\right)}
Do the multiplications in \left(x-3\right)\left(-1\right)x-\left(2x-6\right).
\frac{-x^{2}+x+6}{x\left(x+3\right)}
Combine like terms in -x^{2}+3x-2x+6.
\frac{-x^{2}+x+6}{x^{2}+3x}
Expand x\left(x+3\right).