Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x^{2}-6x+5}{x^{2}-x-20}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Divide \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} by \frac{x^{2}-4x-5}{x^{2}-10x+25} by multiplying \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} by the reciprocal of \frac{x^{2}-4x-5}{x^{2}-10x+25}.
\frac{\frac{\left(x-5\right)\left(x-1\right)}{\left(x-5\right)\left(x+4\right)}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Factor the expressions that are not already factored in \frac{x^{2}-6x+5}{x^{2}-x-20}.
\frac{\frac{x-1}{x+4}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Cancel out x-5 in both numerator and denominator.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Express \frac{x-1}{x+4}\left(x^{2}-10x+25\right) as a single fraction.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}}
Express \frac{x-1}{x+4}\left(x^{2}-4x-5\right) as a single fraction.
\frac{\left(x-1\right)\left(x^{2}-10x+25\right)\left(x+4\right)}{\left(x+4\right)\left(x-1\right)\left(x^{2}-4x-5\right)}
Divide \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} by \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4} by multiplying \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} by the reciprocal of \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}.
\frac{x^{2}-10x+25}{x^{2}-4x-5}
Cancel out \left(x-1\right)\left(x+4\right) in both numerator and denominator.
\frac{\left(x-5\right)^{2}}{\left(x-5\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x-5}{x+1}
Cancel out x-5 in both numerator and denominator.
\frac{\frac{x^{2}-6x+5}{x^{2}-x-20}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Divide \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} by \frac{x^{2}-4x-5}{x^{2}-10x+25} by multiplying \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} by the reciprocal of \frac{x^{2}-4x-5}{x^{2}-10x+25}.
\frac{\frac{\left(x-5\right)\left(x-1\right)}{\left(x-5\right)\left(x+4\right)}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Factor the expressions that are not already factored in \frac{x^{2}-6x+5}{x^{2}-x-20}.
\frac{\frac{x-1}{x+4}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Cancel out x-5 in both numerator and denominator.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Express \frac{x-1}{x+4}\left(x^{2}-10x+25\right) as a single fraction.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}}
Express \frac{x-1}{x+4}\left(x^{2}-4x-5\right) as a single fraction.
\frac{\left(x-1\right)\left(x^{2}-10x+25\right)\left(x+4\right)}{\left(x+4\right)\left(x-1\right)\left(x^{2}-4x-5\right)}
Divide \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} by \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4} by multiplying \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} by the reciprocal of \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}.
\frac{x^{2}-10x+25}{x^{2}-4x-5}
Cancel out \left(x-1\right)\left(x+4\right) in both numerator and denominator.
\frac{\left(x-5\right)^{2}}{\left(x-5\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x-5}{x+1}
Cancel out x-5 in both numerator and denominator.