Solve for a
\left\{\begin{matrix}a=10\text{, }&x\neq 3\\a\neq 0\text{, }&x=2\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=2\text{, }&a\neq 0\\x\neq 3\text{, }&a=10\end{matrix}\right.
Graph
Share
Copied to clipboard
10\left(x^{2}-5x+6\right)=a\left(x-3\right)\left(x-2\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 20a\left(x-3\right), the least common multiple of 2ax-6a,20.
10x^{2}-50x+60=a\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply 10 by x^{2}-5x+6.
10x^{2}-50x+60=\left(ax-3a\right)\left(x-2\right)
Use the distributive property to multiply a by x-3.
10x^{2}-50x+60=ax^{2}-5ax+6a
Use the distributive property to multiply ax-3a by x-2 and combine like terms.
ax^{2}-5ax+6a=10x^{2}-50x+60
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-5x+6\right)a=10x^{2}-50x+60
Combine all terms containing a.
\frac{\left(x^{2}-5x+6\right)a}{x^{2}-5x+6}=\frac{10\left(x-3\right)\left(x-2\right)}{x^{2}-5x+6}
Divide both sides by x^{2}-5x+6.
a=\frac{10\left(x-3\right)\left(x-2\right)}{x^{2}-5x+6}
Dividing by x^{2}-5x+6 undoes the multiplication by x^{2}-5x+6.
a=10
Divide 10\left(-3+x\right)\left(-2+x\right) by x^{2}-5x+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}