Evaluate
-\frac{-cx+x-2c-4}{x+2}
Expand
-\frac{-cx+x-2c-4}{x+2}
Graph
Share
Copied to clipboard
\frac{x\left(x-4\right)}{x\left(-x-2\right)}+c
Factor the expressions that are not already factored in \frac{x^{2}-4x}{-x^{2}-2x}.
\frac{x-4}{-x-2}+c
Cancel out x in both numerator and denominator.
\frac{x-4}{-x-2}+\frac{c\left(-x-2\right)}{-x-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply c times \frac{-x-2}{-x-2}.
\frac{x-4+c\left(-x-2\right)}{-x-2}
Since \frac{x-4}{-x-2} and \frac{c\left(-x-2\right)}{-x-2} have the same denominator, add them by adding their numerators.
\frac{x-4-cx-2c}{-x-2}
Do the multiplications in x-4+c\left(-x-2\right).
\frac{x\left(x-4\right)}{x\left(-x-2\right)}+c
Factor the expressions that are not already factored in \frac{x^{2}-4x}{-x^{2}-2x}.
\frac{x-4}{-x-2}+c
Cancel out x in both numerator and denominator.
\frac{x-4}{-x-2}+\frac{c\left(-x-2\right)}{-x-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply c times \frac{-x-2}{-x-2}.
\frac{x-4+c\left(-x-2\right)}{-x-2}
Since \frac{x-4}{-x-2} and \frac{c\left(-x-2\right)}{-x-2} have the same denominator, add them by adding their numerators.
\frac{x-4-cx-2c}{-x-2}
Do the multiplications in x-4+c\left(-x-2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}