Evaluate
\frac{2+x+x^{2}-x^{4}}{\left(x+2\right)^{2}}
Expand
\frac{2+x+x^{2}-x^{4}}{\left(x+2\right)^{2}}
Graph
Share
Copied to clipboard
\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x^{4}+x-2}{x^{2}+4x+4}
Factor the expressions that are not already factored in \frac{x^{2}-2x}{x^{2}-4}.
\frac{x}{x+2}-\frac{x^{4}+x-2}{x^{2}+4x+4}
Cancel out x-2 in both numerator and denominator.
\frac{x}{x+2}-\frac{x^{4}+x-2}{\left(x+2\right)^{2}}
Factor x^{2}+4x+4.
\frac{x\left(x+2\right)}{\left(x+2\right)^{2}}-\frac{x^{4}+x-2}{\left(x+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and \left(x+2\right)^{2} is \left(x+2\right)^{2}. Multiply \frac{x}{x+2} times \frac{x+2}{x+2}.
\frac{x\left(x+2\right)-\left(x^{4}+x-2\right)}{\left(x+2\right)^{2}}
Since \frac{x\left(x+2\right)}{\left(x+2\right)^{2}} and \frac{x^{4}+x-2}{\left(x+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-x^{4}-x+2}{\left(x+2\right)^{2}}
Do the multiplications in x\left(x+2\right)-\left(x^{4}+x-2\right).
\frac{x^{2}+x-x^{4}+2}{\left(x+2\right)^{2}}
Combine like terms in x^{2}+2x-x^{4}-x+2.
\frac{x^{2}+x-x^{4}+2}{x^{2}+4x+4}
Expand \left(x+2\right)^{2}.
\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x^{4}+x-2}{x^{2}+4x+4}
Factor the expressions that are not already factored in \frac{x^{2}-2x}{x^{2}-4}.
\frac{x}{x+2}-\frac{x^{4}+x-2}{x^{2}+4x+4}
Cancel out x-2 in both numerator and denominator.
\frac{x}{x+2}-\frac{x^{4}+x-2}{\left(x+2\right)^{2}}
Factor x^{2}+4x+4.
\frac{x\left(x+2\right)}{\left(x+2\right)^{2}}-\frac{x^{4}+x-2}{\left(x+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and \left(x+2\right)^{2} is \left(x+2\right)^{2}. Multiply \frac{x}{x+2} times \frac{x+2}{x+2}.
\frac{x\left(x+2\right)-\left(x^{4}+x-2\right)}{\left(x+2\right)^{2}}
Since \frac{x\left(x+2\right)}{\left(x+2\right)^{2}} and \frac{x^{4}+x-2}{\left(x+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-x^{4}-x+2}{\left(x+2\right)^{2}}
Do the multiplications in x\left(x+2\right)-\left(x^{4}+x-2\right).
\frac{x^{2}+x-x^{4}+2}{\left(x+2\right)^{2}}
Combine like terms in x^{2}+2x-x^{4}-x+2.
\frac{x^{2}+x-x^{4}+2}{x^{2}+4x+4}
Expand \left(x+2\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}