Solve for x
x=\sqrt{3}+1\approx 2.732050808
x=1-\sqrt{3}\approx -0.732050808
x=-1
x=2
Graph
Share
Copied to clipboard
\left(x^{2}-2-2x\right)\times \frac{x^{2}-2-x}{x}=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{\left(x^{2}-2-2x\right)\left(x^{2}-2-x\right)}{x}=0
Express \left(x^{2}-2-2x\right)\times \frac{x^{2}-2-x}{x} as a single fraction.
\frac{x^{4}-2x^{2}-3x^{3}+4+6x}{x}=0
Use the distributive property to multiply x^{2}-2-2x by x^{2}-2-x and combine like terms.
x^{4}-2x^{2}-3x^{3}+4+6x=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{4}-3x^{3}-2x^{2}+6x+4=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 4 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}-4x^{2}+2x+4=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}-3x^{3}-2x^{2}+6x+4 by x+1 to get x^{3}-4x^{2}+2x+4. Solve the equation where the result equals to 0.
±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 4 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-2x-2=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-4x^{2}+2x+4 by x-2 to get x^{2}-2x-2. Solve the equation where the result equals to 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-2\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -2 for b, and -2 for c in the quadratic formula.
x=\frac{2±2\sqrt{3}}{2}
Do the calculations.
x=1-\sqrt{3} x=\sqrt{3}+1
Solve the equation x^{2}-2x-2=0 when ± is plus and when ± is minus.
x=-1 x=2 x=1-\sqrt{3} x=\sqrt{3}+1
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}