Solve for x
x=\frac{\sqrt{186}}{6}+2\approx 4.273030283
x=-\frac{\sqrt{186}}{6}+2\approx -0.273030283
Graph
Share
Copied to clipboard
7\left(x^{2}-1\right)=x\left(x+24\right)
Variable x cannot be equal to any of the values -24,0 since division by zero is not defined. Multiply both sides of the equation by 7x\left(x+24\right), the least common multiple of 17x+7x+x^{2},7.
7x^{2}-7=x\left(x+24\right)
Use the distributive property to multiply 7 by x^{2}-1.
7x^{2}-7=x^{2}+24x
Use the distributive property to multiply x by x+24.
7x^{2}-7-x^{2}=24x
Subtract x^{2} from both sides.
6x^{2}-7=24x
Combine 7x^{2} and -x^{2} to get 6x^{2}.
6x^{2}-7-24x=0
Subtract 24x from both sides.
6x^{2}-24x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 6\left(-7\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -24 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 6\left(-7\right)}}{2\times 6}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-24\left(-7\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-24\right)±\sqrt{576+168}}{2\times 6}
Multiply -24 times -7.
x=\frac{-\left(-24\right)±\sqrt{744}}{2\times 6}
Add 576 to 168.
x=\frac{-\left(-24\right)±2\sqrt{186}}{2\times 6}
Take the square root of 744.
x=\frac{24±2\sqrt{186}}{2\times 6}
The opposite of -24 is 24.
x=\frac{24±2\sqrt{186}}{12}
Multiply 2 times 6.
x=\frac{2\sqrt{186}+24}{12}
Now solve the equation x=\frac{24±2\sqrt{186}}{12} when ± is plus. Add 24 to 2\sqrt{186}.
x=\frac{\sqrt{186}}{6}+2
Divide 24+2\sqrt{186} by 12.
x=\frac{24-2\sqrt{186}}{12}
Now solve the equation x=\frac{24±2\sqrt{186}}{12} when ± is minus. Subtract 2\sqrt{186} from 24.
x=-\frac{\sqrt{186}}{6}+2
Divide 24-2\sqrt{186} by 12.
x=\frac{\sqrt{186}}{6}+2 x=-\frac{\sqrt{186}}{6}+2
The equation is now solved.
7\left(x^{2}-1\right)=x\left(x+24\right)
Variable x cannot be equal to any of the values -24,0 since division by zero is not defined. Multiply both sides of the equation by 7x\left(x+24\right), the least common multiple of 17x+7x+x^{2},7.
7x^{2}-7=x\left(x+24\right)
Use the distributive property to multiply 7 by x^{2}-1.
7x^{2}-7=x^{2}+24x
Use the distributive property to multiply x by x+24.
7x^{2}-7-x^{2}=24x
Subtract x^{2} from both sides.
6x^{2}-7=24x
Combine 7x^{2} and -x^{2} to get 6x^{2}.
6x^{2}-7-24x=0
Subtract 24x from both sides.
6x^{2}-24x=7
Add 7 to both sides. Anything plus zero gives itself.
\frac{6x^{2}-24x}{6}=\frac{7}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{24}{6}\right)x=\frac{7}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-4x=\frac{7}{6}
Divide -24 by 6.
x^{2}-4x+\left(-2\right)^{2}=\frac{7}{6}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=\frac{7}{6}+4
Square -2.
x^{2}-4x+4=\frac{31}{6}
Add \frac{7}{6} to 4.
\left(x-2\right)^{2}=\frac{31}{6}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{31}{6}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{186}}{6} x-2=-\frac{\sqrt{186}}{6}
Simplify.
x=\frac{\sqrt{186}}{6}+2 x=-\frac{\sqrt{186}}{6}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}