Solve for x
x=10\sqrt{2490}+500\approx 998.998997995
x=500-10\sqrt{2490}\approx 1.001002005
Graph
Share
Copied to clipboard
x^{2}=1000\left(x-1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
x^{2}=1000x-1000
Use the distributive property to multiply 1000 by x-1.
x^{2}-1000x=-1000
Subtract 1000x from both sides.
x^{2}-1000x+1000=0
Add 1000 to both sides.
x=\frac{-\left(-1000\right)±\sqrt{\left(-1000\right)^{2}-4\times 1000}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1000 for b, and 1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1000\right)±\sqrt{1000000-4\times 1000}}{2}
Square -1000.
x=\frac{-\left(-1000\right)±\sqrt{1000000-4000}}{2}
Multiply -4 times 1000.
x=\frac{-\left(-1000\right)±\sqrt{996000}}{2}
Add 1000000 to -4000.
x=\frac{-\left(-1000\right)±20\sqrt{2490}}{2}
Take the square root of 996000.
x=\frac{1000±20\sqrt{2490}}{2}
The opposite of -1000 is 1000.
x=\frac{20\sqrt{2490}+1000}{2}
Now solve the equation x=\frac{1000±20\sqrt{2490}}{2} when ± is plus. Add 1000 to 20\sqrt{2490}.
x=10\sqrt{2490}+500
Divide 1000+20\sqrt{2490} by 2.
x=\frac{1000-20\sqrt{2490}}{2}
Now solve the equation x=\frac{1000±20\sqrt{2490}}{2} when ± is minus. Subtract 20\sqrt{2490} from 1000.
x=500-10\sqrt{2490}
Divide 1000-20\sqrt{2490} by 2.
x=10\sqrt{2490}+500 x=500-10\sqrt{2490}
The equation is now solved.
x^{2}=1000\left(x-1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
x^{2}=1000x-1000
Use the distributive property to multiply 1000 by x-1.
x^{2}-1000x=-1000
Subtract 1000x from both sides.
x^{2}-1000x+\left(-500\right)^{2}=-1000+\left(-500\right)^{2}
Divide -1000, the coefficient of the x term, by 2 to get -500. Then add the square of -500 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1000x+250000=-1000+250000
Square -500.
x^{2}-1000x+250000=249000
Add -1000 to 250000.
\left(x-500\right)^{2}=249000
Factor x^{2}-1000x+250000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-500\right)^{2}}=\sqrt{249000}
Take the square root of both sides of the equation.
x-500=10\sqrt{2490} x-500=-10\sqrt{2490}
Simplify.
x=10\sqrt{2490}+500 x=500-10\sqrt{2490}
Add 500 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}