Evaluate
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
Factor
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
Share
Copied to clipboard
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x}{x+y}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Factor x^{2}-y^{2}.
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{x}{x+y} times \frac{x-y}{x-y}.
\frac{x^{2}-x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Since \frac{x^{2}}{\left(x+y\right)\left(x-y\right)} and \frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Do the multiplications in x^{2}-x\left(x-y\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Combine like terms in x^{2}-x^{2}+xy.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Factor 2x-2y.
\frac{2xy}{2\left(x+y\right)\left(x-y\right)}+\frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and 2\left(x-y\right) is 2\left(x+y\right)\left(x-y\right). Multiply \frac{xy}{\left(x+y\right)\left(x-y\right)} times \frac{2}{2}. Multiply \frac{y}{2\left(x-y\right)} times \frac{x+y}{x+y}.
\frac{2xy+y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Since \frac{2xy}{2\left(x+y\right)\left(x-y\right)} and \frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)} have the same denominator, add them by adding their numerators.
\frac{2xy+xy+y^{2}}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Do the multiplications in 2xy+y\left(x+y\right).
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Combine like terms in 2xy+xy+y^{2}.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2\left(x+y\right)\left(x-y\right)}
Factor 2x^{2}-2y^{2}.
\frac{y^{2}+3xy-y^{2}}{2\left(x+y\right)\left(x-y\right)}
Since \frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)} and \frac{y^{2}}{2\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3xy}{2\left(x+y\right)\left(x-y\right)}
Combine like terms in y^{2}+3xy-y^{2}.
\frac{3xy}{2x^{2}-2y^{2}}
Expand 2\left(x+y\right)\left(x-y\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}