Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x}{x+y}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Factor x^{2}-y^{2}.
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{x}{x+y} times \frac{x-y}{x-y}.
\frac{x^{2}-x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Since \frac{x^{2}}{\left(x+y\right)\left(x-y\right)} and \frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Do the multiplications in x^{2}-x\left(x-y\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Combine like terms in x^{2}-x^{2}+xy.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Factor 2x-2y.
\frac{2xy}{2\left(x+y\right)\left(x-y\right)}+\frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and 2\left(x-y\right) is 2\left(x+y\right)\left(x-y\right). Multiply \frac{xy}{\left(x+y\right)\left(x-y\right)} times \frac{2}{2}. Multiply \frac{y}{2\left(x-y\right)} times \frac{x+y}{x+y}.
\frac{2xy+y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Since \frac{2xy}{2\left(x+y\right)\left(x-y\right)} and \frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)} have the same denominator, add them by adding their numerators.
\frac{2xy+xy+y^{2}}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Do the multiplications in 2xy+y\left(x+y\right).
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Combine like terms in 2xy+xy+y^{2}.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2\left(x+y\right)\left(x-y\right)}
Factor 2x^{2}-2y^{2}.
\frac{y^{2}+3xy-y^{2}}{2\left(x+y\right)\left(x-y\right)}
Since \frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)} and \frac{y^{2}}{2\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3xy}{2\left(x+y\right)\left(x-y\right)}
Combine like terms in y^{2}+3xy-y^{2}.
\frac{3xy}{2x^{2}-2y^{2}}
Expand 2\left(x+y\right)\left(x-y\right).