Solve for x
x = -\frac{56}{17} = -3\frac{5}{17} \approx -3.294117647
Graph
Share
Copied to clipboard
x^{2}+\left(x-7\right)\times 3x+\left(x+2\right)\times 2x=\left(x-7\right)\left(5x+6\right)+\left(x-7\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,7 since division by zero is not defined. Multiply both sides of the equation by \left(x-7\right)\left(x+2\right), the least common multiple of x^{2}-5x-14,x+2,x-7.
x^{2}+\left(3x-21\right)x+\left(x+2\right)\times 2x=\left(x-7\right)\left(5x+6\right)+\left(x-7\right)\left(x+2\right)
Use the distributive property to multiply x-7 by 3.
x^{2}+3x^{2}-21x+\left(x+2\right)\times 2x=\left(x-7\right)\left(5x+6\right)+\left(x-7\right)\left(x+2\right)
Use the distributive property to multiply 3x-21 by x.
4x^{2}-21x+\left(x+2\right)\times 2x=\left(x-7\right)\left(5x+6\right)+\left(x-7\right)\left(x+2\right)
Combine x^{2} and 3x^{2} to get 4x^{2}.
4x^{2}-21x+\left(2x+4\right)x=\left(x-7\right)\left(5x+6\right)+\left(x-7\right)\left(x+2\right)
Use the distributive property to multiply x+2 by 2.
4x^{2}-21x+2x^{2}+4x=\left(x-7\right)\left(5x+6\right)+\left(x-7\right)\left(x+2\right)
Use the distributive property to multiply 2x+4 by x.
6x^{2}-21x+4x=\left(x-7\right)\left(5x+6\right)+\left(x-7\right)\left(x+2\right)
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
6x^{2}-17x=\left(x-7\right)\left(5x+6\right)+\left(x-7\right)\left(x+2\right)
Combine -21x and 4x to get -17x.
6x^{2}-17x=5x^{2}-29x-42+\left(x-7\right)\left(x+2\right)
Use the distributive property to multiply x-7 by 5x+6 and combine like terms.
6x^{2}-17x=5x^{2}-29x-42+x^{2}-5x-14
Use the distributive property to multiply x-7 by x+2 and combine like terms.
6x^{2}-17x=6x^{2}-29x-42-5x-14
Combine 5x^{2} and x^{2} to get 6x^{2}.
6x^{2}-17x=6x^{2}-34x-42-14
Combine -29x and -5x to get -34x.
6x^{2}-17x=6x^{2}-34x-56
Subtract 14 from -42 to get -56.
6x^{2}-17x-6x^{2}=-34x-56
Subtract 6x^{2} from both sides.
-17x=-34x-56
Combine 6x^{2} and -6x^{2} to get 0.
-17x+34x=-56
Add 34x to both sides.
17x=-56
Combine -17x and 34x to get 17x.
x=\frac{-56}{17}
Divide both sides by 17.
x=-\frac{56}{17}
Fraction \frac{-56}{17} can be rewritten as -\frac{56}{17} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}