Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}}{5x^{2}-25}-\frac{1}{5}-\frac{\left(x+1\right)x^{2}}{5\left(x+1\right)\left(x^{2}-5\right)}
Factor the expressions that are not already factored in \frac{x^{3}+x^{2}}{\left(x+1\right)\left(5x^{2}-25\right)}.
\frac{x^{2}}{5x^{2}-25}-\frac{1}{5}-\frac{x^{2}}{5\left(x^{2}-5\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x^{2}}{5\left(x^{2}-5\right)}-\frac{1}{5}-\frac{x^{2}}{5\left(x^{2}-5\right)}
Factor 5x^{2}-25.
\frac{x^{2}}{5\left(x^{2}-5\right)}-\frac{x^{2}-5}{5\left(x^{2}-5\right)}-\frac{x^{2}}{5\left(x^{2}-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\left(x^{2}-5\right) and 5 is 5\left(x^{2}-5\right). Multiply \frac{1}{5} times \frac{x^{2}-5}{x^{2}-5}.
\frac{x^{2}-\left(x^{2}-5\right)}{5\left(x^{2}-5\right)}-\frac{x^{2}}{5\left(x^{2}-5\right)}
Since \frac{x^{2}}{5\left(x^{2}-5\right)} and \frac{x^{2}-5}{5\left(x^{2}-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x^{2}+5}{5\left(x^{2}-5\right)}-\frac{x^{2}}{5\left(x^{2}-5\right)}
Do the multiplications in x^{2}-\left(x^{2}-5\right).
\frac{5}{5\left(x^{2}-5\right)}-\frac{x^{2}}{5\left(x^{2}-5\right)}
Combine like terms in x^{2}-x^{2}+5.
\frac{5-x^{2}}{5\left(x^{2}-5\right)}
Since \frac{5}{5\left(x^{2}-5\right)} and \frac{x^{2}}{5\left(x^{2}-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-\left(x^{2}-5\right)}{5\left(x^{2}-5\right)}
Extract the negative sign in 5-x^{2}.
\frac{-1}{5}
Cancel out x^{2}-5 in both numerator and denominator.
-\frac{1}{5}
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.