Solve for x
x=-6
x=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
3x^{2}+20x+12=0
Multiply both sides of the equation by 6, the least common multiple of 2,3.
a+b=20 ab=3\times 12=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=2 b=18
The solution is the pair that gives sum 20.
\left(3x^{2}+2x\right)+\left(18x+12\right)
Rewrite 3x^{2}+20x+12 as \left(3x^{2}+2x\right)+\left(18x+12\right).
x\left(3x+2\right)+6\left(3x+2\right)
Factor out x in the first and 6 in the second group.
\left(3x+2\right)\left(x+6\right)
Factor out common term 3x+2 by using distributive property.
x=-\frac{2}{3} x=-6
To find equation solutions, solve 3x+2=0 and x+6=0.
\frac{1}{2}x^{2}+\frac{10}{3}x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{10}{3}±\sqrt{\left(\frac{10}{3}\right)^{2}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, \frac{10}{3} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{10}{3}±\sqrt{\frac{100}{9}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
Square \frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{10}{3}±\sqrt{\frac{100}{9}-2\times 2}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\frac{10}{3}±\sqrt{\frac{100}{9}-4}}{2\times \frac{1}{2}}
Multiply -2 times 2.
x=\frac{-\frac{10}{3}±\sqrt{\frac{64}{9}}}{2\times \frac{1}{2}}
Add \frac{100}{9} to -4.
x=\frac{-\frac{10}{3}±\frac{8}{3}}{2\times \frac{1}{2}}
Take the square root of \frac{64}{9}.
x=\frac{-\frac{10}{3}±\frac{8}{3}}{1}
Multiply 2 times \frac{1}{2}.
x=-\frac{\frac{2}{3}}{1}
Now solve the equation x=\frac{-\frac{10}{3}±\frac{8}{3}}{1} when ± is plus. Add -\frac{10}{3} to \frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{2}{3}
Divide -\frac{2}{3} by 1.
x=-\frac{6}{1}
Now solve the equation x=\frac{-\frac{10}{3}±\frac{8}{3}}{1} when ± is minus. Subtract \frac{8}{3} from -\frac{10}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-6
Divide -6 by 1.
x=-\frac{2}{3} x=-6
The equation is now solved.
\frac{1}{2}x^{2}+\frac{10}{3}x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}+\frac{10}{3}x+2-2=-2
Subtract 2 from both sides of the equation.
\frac{1}{2}x^{2}+\frac{10}{3}x=-2
Subtracting 2 from itself leaves 0.
\frac{\frac{1}{2}x^{2}+\frac{10}{3}x}{\frac{1}{2}}=-\frac{2}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{\frac{10}{3}}{\frac{1}{2}}x=-\frac{2}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+\frac{20}{3}x=-\frac{2}{\frac{1}{2}}
Divide \frac{10}{3} by \frac{1}{2} by multiplying \frac{10}{3} by the reciprocal of \frac{1}{2}.
x^{2}+\frac{20}{3}x=-4
Divide -2 by \frac{1}{2} by multiplying -2 by the reciprocal of \frac{1}{2}.
x^{2}+\frac{20}{3}x+\left(\frac{10}{3}\right)^{2}=-4+\left(\frac{10}{3}\right)^{2}
Divide \frac{20}{3}, the coefficient of the x term, by 2 to get \frac{10}{3}. Then add the square of \frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{20}{3}x+\frac{100}{9}=-4+\frac{100}{9}
Square \frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{20}{3}x+\frac{100}{9}=\frac{64}{9}
Add -4 to \frac{100}{9}.
\left(x+\frac{10}{3}\right)^{2}=\frac{64}{9}
Factor x^{2}+\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Take the square root of both sides of the equation.
x+\frac{10}{3}=\frac{8}{3} x+\frac{10}{3}=-\frac{8}{3}
Simplify.
x=-\frac{2}{3} x=-6
Subtract \frac{10}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}