Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+x}{\left(x-7\right)\left(x+7\right)}+\frac{x^{2}-1}{\left(x+7\right)\left(x+10\right)}
Factor x^{2}-49. Factor x^{2}+17x+70.
\frac{\left(x^{2}+x\right)\left(x+10\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}+\frac{\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-7\right)\left(x+7\right) and \left(x+7\right)\left(x+10\right) is \left(x-7\right)\left(x+7\right)\left(x+10\right). Multiply \frac{x^{2}+x}{\left(x-7\right)\left(x+7\right)} times \frac{x+10}{x+10}. Multiply \frac{x^{2}-1}{\left(x+7\right)\left(x+10\right)} times \frac{x-7}{x-7}.
\frac{\left(x^{2}+x\right)\left(x+10\right)+\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Since \frac{\left(x^{2}+x\right)\left(x+10\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)} and \frac{\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+10x^{2}+x^{2}+10x+x^{3}-7x^{2}-x+7}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Do the multiplications in \left(x^{2}+x\right)\left(x+10\right)+\left(x^{2}-1\right)\left(x-7\right).
\frac{2x^{3}+4x^{2}+9x+7}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Combine like terms in x^{3}+10x^{2}+x^{2}+10x+x^{3}-7x^{2}-x+7.
\frac{2x^{3}+4x^{2}+9x+7}{x^{3}+10x^{2}-49x-490}
Expand \left(x-7\right)\left(x+7\right)\left(x+10\right).
\frac{x^{2}+x}{\left(x-7\right)\left(x+7\right)}+\frac{x^{2}-1}{\left(x+7\right)\left(x+10\right)}
Factor x^{2}-49. Factor x^{2}+17x+70.
\frac{\left(x^{2}+x\right)\left(x+10\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}+\frac{\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-7\right)\left(x+7\right) and \left(x+7\right)\left(x+10\right) is \left(x-7\right)\left(x+7\right)\left(x+10\right). Multiply \frac{x^{2}+x}{\left(x-7\right)\left(x+7\right)} times \frac{x+10}{x+10}. Multiply \frac{x^{2}-1}{\left(x+7\right)\left(x+10\right)} times \frac{x-7}{x-7}.
\frac{\left(x^{2}+x\right)\left(x+10\right)+\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Since \frac{\left(x^{2}+x\right)\left(x+10\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)} and \frac{\left(x^{2}-1\right)\left(x-7\right)}{\left(x-7\right)\left(x+7\right)\left(x+10\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+10x^{2}+x^{2}+10x+x^{3}-7x^{2}-x+7}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Do the multiplications in \left(x^{2}+x\right)\left(x+10\right)+\left(x^{2}-1\right)\left(x-7\right).
\frac{2x^{3}+4x^{2}+9x+7}{\left(x-7\right)\left(x+7\right)\left(x+10\right)}
Combine like terms in x^{3}+10x^{2}+x^{2}+10x+x^{3}-7x^{2}-x+7.
\frac{2x^{3}+4x^{2}+9x+7}{x^{3}+10x^{2}-49x-490}
Expand \left(x-7\right)\left(x+7\right)\left(x+10\right).