Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x^{2}+400-\left(x-12\right)^{2}\right)=2\left(x^{2}+2500-\left(x-12\right)^{2}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 200x, the least common multiple of 40x,100x.
5\left(x^{2}+400-\left(x^{2}-24x+144\right)\right)=2\left(x^{2}+2500-\left(x-12\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-12\right)^{2}.
5\left(x^{2}+400-x^{2}+24x-144\right)=2\left(x^{2}+2500-\left(x-12\right)^{2}\right)
To find the opposite of x^{2}-24x+144, find the opposite of each term.
5\left(400+24x-144\right)=2\left(x^{2}+2500-\left(x-12\right)^{2}\right)
Combine x^{2} and -x^{2} to get 0.
5\left(256+24x\right)=2\left(x^{2}+2500-\left(x-12\right)^{2}\right)
Subtract 144 from 400 to get 256.
1280+120x=2\left(x^{2}+2500-\left(x-12\right)^{2}\right)
Use the distributive property to multiply 5 by 256+24x.
1280+120x=2\left(x^{2}+2500-\left(x^{2}-24x+144\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-12\right)^{2}.
1280+120x=2\left(x^{2}+2500-x^{2}+24x-144\right)
To find the opposite of x^{2}-24x+144, find the opposite of each term.
1280+120x=2\left(2500+24x-144\right)
Combine x^{2} and -x^{2} to get 0.
1280+120x=2\left(2356+24x\right)
Subtract 144 from 2500 to get 2356.
1280+120x=4712+48x
Use the distributive property to multiply 2 by 2356+24x.
1280+120x-48x=4712
Subtract 48x from both sides.
1280+72x=4712
Combine 120x and -48x to get 72x.
72x=4712-1280
Subtract 1280 from both sides.
72x=3432
Subtract 1280 from 4712 to get 3432.
x=\frac{3432}{72}
Divide both sides by 72.
x=\frac{143}{3}
Reduce the fraction \frac{3432}{72} to lowest terms by extracting and canceling out 24.