Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x}{x+2} times \frac{x-2}{x-2}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x\left(x+2\right)+x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Since \frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x^{2}+2x+x^{2}-2x}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Do the multiplications in x\left(x+2\right)+x\left(x-2\right).
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{2x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Combine like terms in x^{2}+2x+x^{2}-2x.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{2x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3\left(x-2\right)\left(x+2\right)}}
Factor 3x^{2}-12.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{3\times 2x^{2}}{3\left(x-2\right)\left(x+2\right)}-\frac{24}{3\left(x-2\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and 3\left(x-2\right)\left(x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{2x^{2}}{\left(x-2\right)\left(x+2\right)} times \frac{3}{3}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{3\times 2x^{2}-24}{3\left(x-2\right)\left(x+2\right)}}
Since \frac{3\times 2x^{2}}{3\left(x-2\right)\left(x+2\right)} and \frac{24}{3\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{6x^{2}-24}{3\left(x-2\right)\left(x+2\right)}}
Do the multiplications in 3\times 2x^{2}-24.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{6\left(x-2\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}}
Factor the expressions that are not already factored in \frac{6x^{2}-24}{3\left(x-2\right)\left(x+2\right)}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{2}
Cancel out 3\left(x-2\right)\left(x+2\right) in both numerator and denominator.
\frac{x^{2}+4x}{\left(x^{2}-4\right)\times 2}
Express \frac{\frac{x^{2}+4x}{x^{2}-4}}{2} as a single fraction.
\frac{x^{2}+4x}{2x^{2}-8}
Use the distributive property to multiply x^{2}-4 by 2.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x}{x+2} times \frac{x-2}{x-2}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x\left(x+2\right)+x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Since \frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x^{2}+2x+x^{2}-2x}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Do the multiplications in x\left(x+2\right)+x\left(x-2\right).
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{2x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Combine like terms in x^{2}+2x+x^{2}-2x.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{2x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3\left(x-2\right)\left(x+2\right)}}
Factor 3x^{2}-12.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{3\times 2x^{2}}{3\left(x-2\right)\left(x+2\right)}-\frac{24}{3\left(x-2\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and 3\left(x-2\right)\left(x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{2x^{2}}{\left(x-2\right)\left(x+2\right)} times \frac{3}{3}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{3\times 2x^{2}-24}{3\left(x-2\right)\left(x+2\right)}}
Since \frac{3\times 2x^{2}}{3\left(x-2\right)\left(x+2\right)} and \frac{24}{3\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{6x^{2}-24}{3\left(x-2\right)\left(x+2\right)}}
Do the multiplications in 3\times 2x^{2}-24.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{6\left(x-2\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}}
Factor the expressions that are not already factored in \frac{6x^{2}-24}{3\left(x-2\right)\left(x+2\right)}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{2}
Cancel out 3\left(x-2\right)\left(x+2\right) in both numerator and denominator.
\frac{x^{2}+4x}{\left(x^{2}-4\right)\times 2}
Express \frac{\frac{x^{2}+4x}{x^{2}-4}}{2} as a single fraction.
\frac{x^{2}+4x}{2x^{2}-8}
Use the distributive property to multiply x^{2}-4 by 2.