Evaluate
\frac{x\left(x+4\right)}{2\left(x^{2}-4\right)}
Expand
\frac{x^{2}+4x}{2\left(x^{2}-4\right)}
Graph
Share
Copied to clipboard
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x}{x+2} times \frac{x-2}{x-2}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x\left(x+2\right)+x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Since \frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x^{2}+2x+x^{2}-2x}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Do the multiplications in x\left(x+2\right)+x\left(x-2\right).
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{2x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Combine like terms in x^{2}+2x+x^{2}-2x.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{2x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3\left(x-2\right)\left(x+2\right)}}
Factor 3x^{2}-12.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{3\times 2x^{2}}{3\left(x-2\right)\left(x+2\right)}-\frac{24}{3\left(x-2\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and 3\left(x-2\right)\left(x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{2x^{2}}{\left(x-2\right)\left(x+2\right)} times \frac{3}{3}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{3\times 2x^{2}-24}{3\left(x-2\right)\left(x+2\right)}}
Since \frac{3\times 2x^{2}}{3\left(x-2\right)\left(x+2\right)} and \frac{24}{3\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{6x^{2}-24}{3\left(x-2\right)\left(x+2\right)}}
Do the multiplications in 3\times 2x^{2}-24.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{6\left(x-2\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}}
Factor the expressions that are not already factored in \frac{6x^{2}-24}{3\left(x-2\right)\left(x+2\right)}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{2}
Cancel out 3\left(x-2\right)\left(x+2\right) in both numerator and denominator.
\frac{x^{2}+4x}{\left(x^{2}-4\right)\times 2}
Express \frac{\frac{x^{2}+4x}{x^{2}-4}}{2} as a single fraction.
\frac{x^{2}+4x}{2x^{2}-8}
Use the distributive property to multiply x^{2}-4 by 2.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x}{x-2} times \frac{x+2}{x+2}. Multiply \frac{x}{x+2} times \frac{x-2}{x-2}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x\left(x+2\right)+x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Since \frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{x^{2}+2x+x^{2}-2x}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Do the multiplications in x\left(x+2\right)+x\left(x-2\right).
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{2x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3x^{2}-12}}
Combine like terms in x^{2}+2x+x^{2}-2x.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{2x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{24}{3\left(x-2\right)\left(x+2\right)}}
Factor 3x^{2}-12.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{3\times 2x^{2}}{3\left(x-2\right)\left(x+2\right)}-\frac{24}{3\left(x-2\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and 3\left(x-2\right)\left(x+2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{2x^{2}}{\left(x-2\right)\left(x+2\right)} times \frac{3}{3}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{3\times 2x^{2}-24}{3\left(x-2\right)\left(x+2\right)}}
Since \frac{3\times 2x^{2}}{3\left(x-2\right)\left(x+2\right)} and \frac{24}{3\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{6x^{2}-24}{3\left(x-2\right)\left(x+2\right)}}
Do the multiplications in 3\times 2x^{2}-24.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{\frac{6\left(x-2\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}}
Factor the expressions that are not already factored in \frac{6x^{2}-24}{3\left(x-2\right)\left(x+2\right)}.
\frac{\frac{x^{2}+4x}{x^{2}-4}}{2}
Cancel out 3\left(x-2\right)\left(x+2\right) in both numerator and denominator.
\frac{x^{2}+4x}{\left(x^{2}-4\right)\times 2}
Express \frac{\frac{x^{2}+4x}{x^{2}-4}}{2} as a single fraction.
\frac{x^{2}+4x}{2x^{2}-8}
Use the distributive property to multiply x^{2}-4 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}