Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}+25}{\left(x-5\right)^{3}}+\frac{-10x}{\left(x-5\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)^{3} and \left(5-x\right)^{3} is \left(x-5\right)^{3}. Multiply \frac{10x}{\left(5-x\right)^{3}} times \frac{-1}{-1}.
\frac{x^{2}+25-10x}{\left(x-5\right)^{3}}
Since \frac{x^{2}+25}{\left(x-5\right)^{3}} and \frac{-10x}{\left(x-5\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{\left(x-5\right)^{2}}{\left(x-5\right)^{3}}
Factor the expressions that are not already factored in \frac{x^{2}+25-10x}{\left(x-5\right)^{3}}.
\frac{1}{x-5}
Cancel out \left(x-5\right)^{2} in both numerator and denominator.
\frac{x^{2}+25}{\left(x-5\right)^{3}}+\frac{-10x}{\left(x-5\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)^{3} and \left(5-x\right)^{3} is \left(x-5\right)^{3}. Multiply \frac{10x}{\left(5-x\right)^{3}} times \frac{-1}{-1}.
\frac{x^{2}+25-10x}{\left(x-5\right)^{3}}
Since \frac{x^{2}+25}{\left(x-5\right)^{3}} and \frac{-10x}{\left(x-5\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{\left(x-5\right)^{2}}{\left(x-5\right)^{3}}
Factor the expressions that are not already factored in \frac{x^{2}+25-10x}{\left(x-5\right)^{3}}.
\frac{1}{x-5}
Cancel out \left(x-5\right)^{2} in both numerator and denominator.