Solve for x (complex solution)
x\in \mathrm{C}\setminus -7,7
Solve for x
x\in \mathrm{R}\setminus 7,-7
Graph
Share
Copied to clipboard
x^{2}+14x+49=\left(x+7\right)\left(x+7\right)
Variable x cannot be equal to any of the values -7,7 since division by zero is not defined. Multiply both sides of the equation by \left(x-7\right)\left(x+7\right), the least common multiple of x^{2}-49,x-7.
x^{2}+14x+49=\left(x+7\right)^{2}
Multiply x+7 and x+7 to get \left(x+7\right)^{2}.
x^{2}+14x+49=x^{2}+14x+49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
x^{2}+14x+49-x^{2}=14x+49
Subtract x^{2} from both sides.
14x+49=14x+49
Combine x^{2} and -x^{2} to get 0.
14x+49-14x=49
Subtract 14x from both sides.
49=49
Combine 14x and -14x to get 0.
\text{true}
Compare 49 and 49.
x\in \mathrm{C}
This is true for any x.
x\in \mathrm{C}\setminus -7,7
Variable x cannot be equal to any of the values -7,7.
x^{2}+14x+49=\left(x+7\right)\left(x+7\right)
Variable x cannot be equal to any of the values -7,7 since division by zero is not defined. Multiply both sides of the equation by \left(x-7\right)\left(x+7\right), the least common multiple of x^{2}-49,x-7.
x^{2}+14x+49=\left(x+7\right)^{2}
Multiply x+7 and x+7 to get \left(x+7\right)^{2}.
x^{2}+14x+49=x^{2}+14x+49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
x^{2}+14x+49-x^{2}=14x+49
Subtract x^{2} from both sides.
14x+49=14x+49
Combine x^{2} and -x^{2} to get 0.
14x+49-14x=49
Subtract 14x from both sides.
49=49
Combine 14x and -14x to get 0.
\text{true}
Compare 49 and 49.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus -7,7
Variable x cannot be equal to any of the values -7,7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}