Evaluate
\frac{x+y}{xy}
Expand
\frac{x+y}{xy}
Share
Copied to clipboard
\frac{\left(y^{-3}x^{3}+1\right)x^{-3}}{\left(-\frac{1}{y}x+1+y^{-2}x^{2}\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{y^{-3}x^{3}+1}{\left(-\frac{1}{y}x+1+y^{-2}x^{2}\right)x^{1}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1+\left(\frac{1}{y}x\right)^{3}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
Expand the expression.
\frac{1+\left(\frac{x}{y}\right)^{3}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
Express \frac{1}{y}x as a single fraction.
\frac{1+\frac{x^{3}}{y^{3}}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{y^{3}}{y^{3}}+\frac{x^{3}}{y^{3}}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{3}}{y^{3}}.
\frac{\frac{y^{3}+x^{3}}{y^{3}}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
Since \frac{y^{3}}{y^{3}} and \frac{x^{3}}{y^{3}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{3}+x^{3}}{y^{3}}}{-\frac{x^{2}}{y}+x+y^{-2}x^{3}}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{y^{3}+x^{3}}{y^{3}\left(-\frac{x^{2}}{y}+x+y^{-2}x^{3}\right)}
Express \frac{\frac{y^{3}+x^{3}}{y^{3}}}{-\frac{x^{2}}{y}+x+y^{-2}x^{3}} as a single fraction.
\frac{y^{3}+x^{3}}{-y^{3}\times \frac{x^{2}}{y}+y^{3}x+y^{3}y^{-2}x^{3}}
Use the distributive property to multiply y^{3} by -\frac{x^{2}}{y}+x+y^{-2}x^{3}.
\frac{y^{3}+x^{3}}{-y^{3}\times \frac{x^{2}}{y}+y^{3}x+y^{1}x^{3}}
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
\frac{y^{3}+x^{3}}{-\frac{y^{3}x^{2}}{y}+y^{3}x+y^{1}x^{3}}
Express y^{3}\times \frac{x^{2}}{y} as a single fraction.
\frac{y^{3}+x^{3}}{-x^{2}y^{2}+y^{3}x+y^{1}x^{3}}
Cancel out y in both numerator and denominator.
\frac{y^{3}+x^{3}}{-x^{2}y^{2}+y^{3}x+yx^{3}}
Calculate y to the power of 1 and get y.
\frac{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}{xy\left(x^{2}-xy+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{x+y}{xy}
Cancel out x^{2}-xy+y^{2} in both numerator and denominator.
\frac{\left(y^{-3}x^{3}+1\right)x^{-3}}{\left(-\frac{1}{y}x+1+y^{-2}x^{2}\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{y^{-3}x^{3}+1}{\left(-\frac{1}{y}x+1+y^{-2}x^{2}\right)x^{1}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1+\left(\frac{1}{y}x\right)^{3}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
Expand the expression.
\frac{1+\left(\frac{x}{y}\right)^{3}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
Express \frac{1}{y}x as a single fraction.
\frac{1+\frac{x^{3}}{y^{3}}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{y^{3}}{y^{3}}+\frac{x^{3}}{y^{3}}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{3}}{y^{3}}.
\frac{\frac{y^{3}+x^{3}}{y^{3}}}{-\frac{1}{y}x^{2}+x+y^{-2}x^{3}}
Since \frac{y^{3}}{y^{3}} and \frac{x^{3}}{y^{3}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{3}+x^{3}}{y^{3}}}{-\frac{x^{2}}{y}+x+y^{-2}x^{3}}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{y^{3}+x^{3}}{y^{3}\left(-\frac{x^{2}}{y}+x+y^{-2}x^{3}\right)}
Express \frac{\frac{y^{3}+x^{3}}{y^{3}}}{-\frac{x^{2}}{y}+x+y^{-2}x^{3}} as a single fraction.
\frac{y^{3}+x^{3}}{-y^{3}\times \frac{x^{2}}{y}+y^{3}x+y^{3}y^{-2}x^{3}}
Use the distributive property to multiply y^{3} by -\frac{x^{2}}{y}+x+y^{-2}x^{3}.
\frac{y^{3}+x^{3}}{-y^{3}\times \frac{x^{2}}{y}+y^{3}x+y^{1}x^{3}}
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
\frac{y^{3}+x^{3}}{-\frac{y^{3}x^{2}}{y}+y^{3}x+y^{1}x^{3}}
Express y^{3}\times \frac{x^{2}}{y} as a single fraction.
\frac{y^{3}+x^{3}}{-x^{2}y^{2}+y^{3}x+y^{1}x^{3}}
Cancel out y in both numerator and denominator.
\frac{y^{3}+x^{3}}{-x^{2}y^{2}+y^{3}x+yx^{3}}
Calculate y to the power of 1 and get y.
\frac{\left(x+y\right)\left(x^{2}-xy+y^{2}\right)}{xy\left(x^{2}-xy+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{x+y}{xy}
Cancel out x^{2}-xy+y^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}