Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{a}{3}\text{, }&x\neq \frac{a}{3}\\b\in \mathrm{C}\text{, }&x=\frac{a}{2}\text{ and }a\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{a}{3}\text{, }&x\neq \frac{a}{3}\\b\in \mathrm{R}\text{, }&x=\frac{a}{2}\text{ and }a\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=2x\text{, }&x\neq 0\\a=-3b\text{, }&x\neq -b\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(-3x+a\right)\left(x+a\right)=-3\left(x-b\right)^{2}-\left(3ab-3b^{2}\right)
Multiply both sides of the equation by 3\left(-3x+a\right), the least common multiple of 3,3x-a,9x-3a.
-3x^{2}-2xa+a^{2}=-3\left(x-b\right)^{2}-\left(3ab-3b^{2}\right)
Use the distributive property to multiply -3x+a by x+a and combine like terms.
-3x^{2}-2xa+a^{2}=-3\left(x^{2}-2xb+b^{2}\right)-\left(3ab-3b^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-b\right)^{2}.
-3x^{2}-2xa+a^{2}=-3x^{2}+6xb-3b^{2}-\left(3ab-3b^{2}\right)
Use the distributive property to multiply -3 by x^{2}-2xb+b^{2}.
-3x^{2}-2xa+a^{2}=-3x^{2}+6xb-3b^{2}-3ab+3b^{2}
To find the opposite of 3ab-3b^{2}, find the opposite of each term.
-3x^{2}-2xa+a^{2}=-3x^{2}+6xb-3ab
Combine -3b^{2} and 3b^{2} to get 0.
-3x^{2}+6xb-3ab=-3x^{2}-2xa+a^{2}
Swap sides so that all variable terms are on the left hand side.
6xb-3ab=-3x^{2}-2xa+a^{2}+3x^{2}
Add 3x^{2} to both sides.
6xb-3ab=-2xa+a^{2}
Combine -3x^{2} and 3x^{2} to get 0.
\left(6x-3a\right)b=-2xa+a^{2}
Combine all terms containing b.
\left(6x-3a\right)b=a^{2}-2ax
The equation is in standard form.
\frac{\left(6x-3a\right)b}{6x-3a}=\frac{a\left(a-2x\right)}{6x-3a}
Divide both sides by 6x-3a.
b=\frac{a\left(a-2x\right)}{6x-3a}
Dividing by 6x-3a undoes the multiplication by 6x-3a.
b=-\frac{a}{3}
Divide a\left(-2x+a\right) by 6x-3a.
\left(-3x+a\right)\left(x+a\right)=-3\left(x-b\right)^{2}-\left(3ab-3b^{2}\right)
Multiply both sides of the equation by 3\left(-3x+a\right), the least common multiple of 3,3x-a,9x-3a.
-3x^{2}-2xa+a^{2}=-3\left(x-b\right)^{2}-\left(3ab-3b^{2}\right)
Use the distributive property to multiply -3x+a by x+a and combine like terms.
-3x^{2}-2xa+a^{2}=-3\left(x^{2}-2xb+b^{2}\right)-\left(3ab-3b^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-b\right)^{2}.
-3x^{2}-2xa+a^{2}=-3x^{2}+6xb-3b^{2}-\left(3ab-3b^{2}\right)
Use the distributive property to multiply -3 by x^{2}-2xb+b^{2}.
-3x^{2}-2xa+a^{2}=-3x^{2}+6xb-3b^{2}-3ab+3b^{2}
To find the opposite of 3ab-3b^{2}, find the opposite of each term.
-3x^{2}-2xa+a^{2}=-3x^{2}+6xb-3ab
Combine -3b^{2} and 3b^{2} to get 0.
-3x^{2}+6xb-3ab=-3x^{2}-2xa+a^{2}
Swap sides so that all variable terms are on the left hand side.
6xb-3ab=-3x^{2}-2xa+a^{2}+3x^{2}
Add 3x^{2} to both sides.
6xb-3ab=-2xa+a^{2}
Combine -3x^{2} and 3x^{2} to get 0.
\left(6x-3a\right)b=-2xa+a^{2}
Combine all terms containing b.
\left(6x-3a\right)b=a^{2}-2ax
The equation is in standard form.
\frac{\left(6x-3a\right)b}{6x-3a}=\frac{a\left(a-2x\right)}{6x-3a}
Divide both sides by 6x-3a.
b=\frac{a\left(a-2x\right)}{6x-3a}
Dividing by 6x-3a undoes the multiplication by 6x-3a.
b=-\frac{a}{3}
Divide a\left(-2x+a\right) by 6x-3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}