Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{\left(x+6\right)\left(x^{2}-4x-12\right)}{\left(x-1\right)\left(x^{2}-x\right)}}{\frac{x^{2}+8x+12}{x-6}}
Multiply \frac{x+6}{x-1} times \frac{x^{2}-4x-12}{x^{2}-x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+6\right)\left(x^{2}-4x-12\right)\left(x-6\right)}{\left(x-1\right)\left(x^{2}-x\right)\left(x^{2}+8x+12\right)}
Divide \frac{\left(x+6\right)\left(x^{2}-4x-12\right)}{\left(x-1\right)\left(x^{2}-x\right)} by \frac{x^{2}+8x+12}{x-6} by multiplying \frac{\left(x+6\right)\left(x^{2}-4x-12\right)}{\left(x-1\right)\left(x^{2}-x\right)} by the reciprocal of \frac{x^{2}+8x+12}{x-6}.
\frac{\left(x+2\right)\left(x+6\right)\left(x-6\right)^{2}}{x\left(x+2\right)\left(x+6\right)\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{\left(x-6\right)^{2}}{x\left(x-1\right)^{2}}
Cancel out \left(x+2\right)\left(x+6\right) in both numerator and denominator.
\frac{x^{2}-12x+36}{x^{3}-2x^{2}+x}
Expand the expression.
\frac{\frac{\left(x+6\right)\left(x^{2}-4x-12\right)}{\left(x-1\right)\left(x^{2}-x\right)}}{\frac{x^{2}+8x+12}{x-6}}
Multiply \frac{x+6}{x-1} times \frac{x^{2}-4x-12}{x^{2}-x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x+6\right)\left(x^{2}-4x-12\right)\left(x-6\right)}{\left(x-1\right)\left(x^{2}-x\right)\left(x^{2}+8x+12\right)}
Divide \frac{\left(x+6\right)\left(x^{2}-4x-12\right)}{\left(x-1\right)\left(x^{2}-x\right)} by \frac{x^{2}+8x+12}{x-6} by multiplying \frac{\left(x+6\right)\left(x^{2}-4x-12\right)}{\left(x-1\right)\left(x^{2}-x\right)} by the reciprocal of \frac{x^{2}+8x+12}{x-6}.
\frac{\left(x+2\right)\left(x+6\right)\left(x-6\right)^{2}}{x\left(x+2\right)\left(x+6\right)\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{\left(x-6\right)^{2}}{x\left(x-1\right)^{2}}
Cancel out \left(x+2\right)\left(x+6\right) in both numerator and denominator.
\frac{x^{2}-12x+36}{x^{3}-2x^{2}+x}
Expand the expression.