Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+6}{\left(x-7\right)\left(x+4\right)}+\frac{x+5}{\left(x-9\right)\left(x+4\right)}
Factor x^{2}-3x-28. Factor x^{2}-5x-36.
\frac{\left(x+6\right)\left(x-9\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}+\frac{\left(x+5\right)\left(x-7\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-7\right)\left(x+4\right) and \left(x-9\right)\left(x+4\right) is \left(x-9\right)\left(x-7\right)\left(x+4\right). Multiply \frac{x+6}{\left(x-7\right)\left(x+4\right)} times \frac{x-9}{x-9}. Multiply \frac{x+5}{\left(x-9\right)\left(x+4\right)} times \frac{x-7}{x-7}.
\frac{\left(x+6\right)\left(x-9\right)+\left(x+5\right)\left(x-7\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}
Since \frac{\left(x+6\right)\left(x-9\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)} and \frac{\left(x+5\right)\left(x-7\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-9x+6x-54+x^{2}-7x+5x-35}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}
Do the multiplications in \left(x+6\right)\left(x-9\right)+\left(x+5\right)\left(x-7\right).
\frac{2x^{2}-5x-89}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}
Combine like terms in x^{2}-9x+6x-54+x^{2}-7x+5x-35.
\frac{2x^{2}-5x-89}{x^{3}-12x^{2}-x+252}
Expand \left(x-9\right)\left(x-7\right)\left(x+4\right).
\frac{x+6}{\left(x-7\right)\left(x+4\right)}+\frac{x+5}{\left(x-9\right)\left(x+4\right)}
Factor x^{2}-3x-28. Factor x^{2}-5x-36.
\frac{\left(x+6\right)\left(x-9\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}+\frac{\left(x+5\right)\left(x-7\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-7\right)\left(x+4\right) and \left(x-9\right)\left(x+4\right) is \left(x-9\right)\left(x-7\right)\left(x+4\right). Multiply \frac{x+6}{\left(x-7\right)\left(x+4\right)} times \frac{x-9}{x-9}. Multiply \frac{x+5}{\left(x-9\right)\left(x+4\right)} times \frac{x-7}{x-7}.
\frac{\left(x+6\right)\left(x-9\right)+\left(x+5\right)\left(x-7\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}
Since \frac{\left(x+6\right)\left(x-9\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)} and \frac{\left(x+5\right)\left(x-7\right)}{\left(x-9\right)\left(x-7\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-9x+6x-54+x^{2}-7x+5x-35}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}
Do the multiplications in \left(x+6\right)\left(x-9\right)+\left(x+5\right)\left(x-7\right).
\frac{2x^{2}-5x-89}{\left(x-9\right)\left(x-7\right)\left(x+4\right)}
Combine like terms in x^{2}-9x+6x-54+x^{2}-7x+5x-35.
\frac{2x^{2}-5x-89}{x^{3}-12x^{2}-x+252}
Expand \left(x-9\right)\left(x-7\right)\left(x+4\right).