Solve for x
x=7y-34
Solve for y
y=\frac{x+34}{7}
Graph
Share
Copied to clipboard
\frac{x}{\frac{28}{5}}+\frac{6}{\frac{28}{5}}=\frac{y-4}{\frac{4}{5}}
Divide each term of x+6 by \frac{28}{5} to get \frac{x}{\frac{28}{5}}+\frac{6}{\frac{28}{5}}.
\frac{x}{\frac{28}{5}}+6\times \frac{5}{28}=\frac{y-4}{\frac{4}{5}}
Divide 6 by \frac{28}{5} by multiplying 6 by the reciprocal of \frac{28}{5}.
\frac{x}{\frac{28}{5}}+\frac{15}{14}=\frac{y-4}{\frac{4}{5}}
Multiply 6 and \frac{5}{28} to get \frac{15}{14}.
\frac{x}{\frac{28}{5}}+\frac{15}{14}=\frac{y}{\frac{4}{5}}+\frac{-4}{\frac{4}{5}}
Divide each term of y-4 by \frac{4}{5} to get \frac{y}{\frac{4}{5}}+\frac{-4}{\frac{4}{5}}.
\frac{x}{\frac{28}{5}}+\frac{15}{14}=\frac{y}{\frac{4}{5}}-4\times \frac{5}{4}
Divide -4 by \frac{4}{5} by multiplying -4 by the reciprocal of \frac{4}{5}.
\frac{x}{\frac{28}{5}}+\frac{15}{14}=\frac{y}{\frac{4}{5}}-5
Multiply -4 and \frac{5}{4} to get -5.
\frac{x}{\frac{28}{5}}=\frac{y}{\frac{4}{5}}-5-\frac{15}{14}
Subtract \frac{15}{14} from both sides.
\frac{x}{\frac{28}{5}}=\frac{y}{\frac{4}{5}}-\frac{85}{14}
Subtract \frac{15}{14} from -5 to get -\frac{85}{14}.
\frac{5}{28}x=\frac{5y}{4}-\frac{85}{14}
The equation is in standard form.
\frac{\frac{5}{28}x}{\frac{5}{28}}=\frac{\frac{5y}{4}-\frac{85}{14}}{\frac{5}{28}}
Divide both sides of the equation by \frac{5}{28}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{5y}{4}-\frac{85}{14}}{\frac{5}{28}}
Dividing by \frac{5}{28} undoes the multiplication by \frac{5}{28}.
x=7y-34
Divide \frac{5y}{4}-\frac{85}{14} by \frac{5}{28} by multiplying \frac{5y}{4}-\frac{85}{14} by the reciprocal of \frac{5}{28}.
\frac{x}{\frac{28}{5}}+\frac{6}{\frac{28}{5}}=\frac{y-4}{\frac{4}{5}}
Divide each term of x+6 by \frac{28}{5} to get \frac{x}{\frac{28}{5}}+\frac{6}{\frac{28}{5}}.
\frac{x}{\frac{28}{5}}+6\times \frac{5}{28}=\frac{y-4}{\frac{4}{5}}
Divide 6 by \frac{28}{5} by multiplying 6 by the reciprocal of \frac{28}{5}.
\frac{x}{\frac{28}{5}}+\frac{15}{14}=\frac{y-4}{\frac{4}{5}}
Multiply 6 and \frac{5}{28} to get \frac{15}{14}.
\frac{x}{\frac{28}{5}}+\frac{15}{14}=\frac{y}{\frac{4}{5}}+\frac{-4}{\frac{4}{5}}
Divide each term of y-4 by \frac{4}{5} to get \frac{y}{\frac{4}{5}}+\frac{-4}{\frac{4}{5}}.
\frac{x}{\frac{28}{5}}+\frac{15}{14}=\frac{y}{\frac{4}{5}}-4\times \frac{5}{4}
Divide -4 by \frac{4}{5} by multiplying -4 by the reciprocal of \frac{4}{5}.
\frac{x}{\frac{28}{5}}+\frac{15}{14}=\frac{y}{\frac{4}{5}}-5
Multiply -4 and \frac{5}{4} to get -5.
\frac{y}{\frac{4}{5}}-5=\frac{x}{\frac{28}{5}}+\frac{15}{14}
Swap sides so that all variable terms are on the left hand side.
\frac{y}{\frac{4}{5}}=\frac{x}{\frac{28}{5}}+\frac{15}{14}+5
Add 5 to both sides.
\frac{y}{\frac{4}{5}}=\frac{x}{\frac{28}{5}}+\frac{85}{14}
Add \frac{15}{14} and 5 to get \frac{85}{14}.
\frac{5}{4}y=\frac{5x}{28}+\frac{85}{14}
The equation is in standard form.
\frac{\frac{5}{4}y}{\frac{5}{4}}=\frac{\frac{5x}{28}+\frac{85}{14}}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{\frac{5x}{28}+\frac{85}{14}}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
y=\frac{x+34}{7}
Divide \frac{85}{14}+\frac{5x}{28} by \frac{5}{4} by multiplying \frac{85}{14}+\frac{5x}{28} by the reciprocal of \frac{5}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}