Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+5}{x+3}-\frac{9x+29}{\left(x+3\right)\left(x+4\right)}
Factor x^{2}+7x+12.
\frac{\left(x+5\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{9x+29}{\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and \left(x+3\right)\left(x+4\right) is \left(x+3\right)\left(x+4\right). Multiply \frac{x+5}{x+3} times \frac{x+4}{x+4}.
\frac{\left(x+5\right)\left(x+4\right)-\left(9x+29\right)}{\left(x+3\right)\left(x+4\right)}
Since \frac{\left(x+5\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} and \frac{9x+29}{\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+4x+5x+20-9x-29}{\left(x+3\right)\left(x+4\right)}
Do the multiplications in \left(x+5\right)\left(x+4\right)-\left(9x+29\right).
\frac{x^{2}-9}{\left(x+3\right)\left(x+4\right)}
Combine like terms in x^{2}+4x+5x+20-9x-29.
\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{x^{2}-9}{\left(x+3\right)\left(x+4\right)}.
\frac{x-3}{x+4}
Cancel out x+3 in both numerator and denominator.
\frac{x+5}{x+3}-\frac{9x+29}{\left(x+3\right)\left(x+4\right)}
Factor x^{2}+7x+12.
\frac{\left(x+5\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{9x+29}{\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and \left(x+3\right)\left(x+4\right) is \left(x+3\right)\left(x+4\right). Multiply \frac{x+5}{x+3} times \frac{x+4}{x+4}.
\frac{\left(x+5\right)\left(x+4\right)-\left(9x+29\right)}{\left(x+3\right)\left(x+4\right)}
Since \frac{\left(x+5\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} and \frac{9x+29}{\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+4x+5x+20-9x-29}{\left(x+3\right)\left(x+4\right)}
Do the multiplications in \left(x+5\right)\left(x+4\right)-\left(9x+29\right).
\frac{x^{2}-9}{\left(x+3\right)\left(x+4\right)}
Combine like terms in x^{2}+4x+5x+20-9x-29.
\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{x^{2}-9}{\left(x+3\right)\left(x+4\right)}.
\frac{x-3}{x+4}
Cancel out x+3 in both numerator and denominator.