Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x+5\right)\left(x+2\right)}{\left(x+2\right)\left(-x+3\right)}+\frac{3\left(-x+3\right)}{\left(x+2\right)\left(-x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3-x and x+2 is \left(x+2\right)\left(-x+3\right). Multiply \frac{x+5}{3-x} times \frac{x+2}{x+2}. Multiply \frac{3}{x+2} times \frac{-x+3}{-x+3}.
\frac{\left(x+5\right)\left(x+2\right)+3\left(-x+3\right)}{\left(x+2\right)\left(-x+3\right)}
Since \frac{\left(x+5\right)\left(x+2\right)}{\left(x+2\right)\left(-x+3\right)} and \frac{3\left(-x+3\right)}{\left(x+2\right)\left(-x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x+5x+10-3x+9}{\left(x+2\right)\left(-x+3\right)}
Do the multiplications in \left(x+5\right)\left(x+2\right)+3\left(-x+3\right).
\frac{x^{2}+4x+19}{\left(x+2\right)\left(-x+3\right)}
Combine like terms in x^{2}+2x+5x+10-3x+9.
\frac{x^{2}+4x+19}{-x^{2}+x+6}
Expand \left(x+2\right)\left(-x+3\right).
\frac{\left(x+5\right)\left(x+2\right)}{\left(x+2\right)\left(-x+3\right)}+\frac{3\left(-x+3\right)}{\left(x+2\right)\left(-x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3-x and x+2 is \left(x+2\right)\left(-x+3\right). Multiply \frac{x+5}{3-x} times \frac{x+2}{x+2}. Multiply \frac{3}{x+2} times \frac{-x+3}{-x+3}.
\frac{\left(x+5\right)\left(x+2\right)+3\left(-x+3\right)}{\left(x+2\right)\left(-x+3\right)}
Since \frac{\left(x+5\right)\left(x+2\right)}{\left(x+2\right)\left(-x+3\right)} and \frac{3\left(-x+3\right)}{\left(x+2\right)\left(-x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x+5x+10-3x+9}{\left(x+2\right)\left(-x+3\right)}
Do the multiplications in \left(x+5\right)\left(x+2\right)+3\left(-x+3\right).
\frac{x^{2}+4x+19}{\left(x+2\right)\left(-x+3\right)}
Combine like terms in x^{2}+2x+5x+10-3x+9.
\frac{x^{2}+4x+19}{-x^{2}+x+6}
Expand \left(x+2\right)\left(-x+3\right).