Solve for r
r=2x+\frac{8}{5}
Solve for x
x=\frac{r}{2}-\frac{4}{5}
Share
Copied to clipboard
10\left(x+4\right)-5\left(6+r\right)=2
Multiply both sides of the equation by 20, the least common multiple of 2,4,10.
10x+40-5\left(6+r\right)=2
Use the distributive property to multiply 10 by x+4.
10x+40-30-5r=2
Use the distributive property to multiply -5 by 6+r.
10x+10-5r=2
Subtract 30 from 40 to get 10.
10-5r=2-10x
Subtract 10x from both sides.
-5r=2-10x-10
Subtract 10 from both sides.
-5r=-8-10x
Subtract 10 from 2 to get -8.
-5r=-10x-8
The equation is in standard form.
\frac{-5r}{-5}=\frac{-10x-8}{-5}
Divide both sides by -5.
r=\frac{-10x-8}{-5}
Dividing by -5 undoes the multiplication by -5.
r=2x+\frac{8}{5}
Divide -8-10x by -5.
10\left(x+4\right)-5\left(6+r\right)=2
Multiply both sides of the equation by 20, the least common multiple of 2,4,10.
10x+40-5\left(6+r\right)=2
Use the distributive property to multiply 10 by x+4.
10x+40-30-5r=2
Use the distributive property to multiply -5 by 6+r.
10x+10-5r=2
Subtract 30 from 40 to get 10.
10x-5r=2-10
Subtract 10 from both sides.
10x-5r=-8
Subtract 10 from 2 to get -8.
10x=-8+5r
Add 5r to both sides.
10x=5r-8
The equation is in standard form.
\frac{10x}{10}=\frac{5r-8}{10}
Divide both sides by 10.
x=\frac{5r-8}{10}
Dividing by 10 undoes the multiplication by 10.
x=\frac{r}{2}-\frac{4}{5}
Divide -8+5r by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}