Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+6\right)\left(x+3\right)+\left(2x-6\right)\left(x-3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x+3\right), the least common multiple of x-3,x+3,2.
2x^{2}+12x+18+\left(2x-6\right)\left(x-3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
Use the distributive property to multiply 2x+6 by x+3 and combine like terms.
2x^{2}+12x+18+2x^{2}-12x+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
Use the distributive property to multiply 2x-6 by x-3 and combine like terms.
4x^{2}+12x+18-12x+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
Combine 2x^{2} and 2x^{2} to get 4x^{2}.
4x^{2}+18+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
Combine 12x and -12x to get 0.
4x^{2}+36=\left(x^{2}-9\right)\left(2\times 2+1\right)
Add 18 and 18 to get 36.
4x^{2}+36=\left(x^{2}-9\right)\left(4+1\right)
Multiply 2 and 2 to get 4.
4x^{2}+36=\left(x^{2}-9\right)\times 5
Add 4 and 1 to get 5.
4x^{2}+36=5x^{2}-45
Use the distributive property to multiply x^{2}-9 by 5.
4x^{2}+36-5x^{2}=-45
Subtract 5x^{2} from both sides.
-x^{2}+36=-45
Combine 4x^{2} and -5x^{2} to get -x^{2}.
-x^{2}=-45-36
Subtract 36 from both sides.
-x^{2}=-81
Subtract 36 from -45 to get -81.
x^{2}=\frac{-81}{-1}
Divide both sides by -1.
x^{2}=81
Fraction \frac{-81}{-1} can be simplified to 81 by removing the negative sign from both the numerator and the denominator.
x=9 x=-9
Take the square root of both sides of the equation.
\left(2x+6\right)\left(x+3\right)+\left(2x-6\right)\left(x-3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x+3\right), the least common multiple of x-3,x+3,2.
2x^{2}+12x+18+\left(2x-6\right)\left(x-3\right)=\left(x^{2}-9\right)\left(2\times 2+1\right)
Use the distributive property to multiply 2x+6 by x+3 and combine like terms.
2x^{2}+12x+18+2x^{2}-12x+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
Use the distributive property to multiply 2x-6 by x-3 and combine like terms.
4x^{2}+12x+18-12x+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
Combine 2x^{2} and 2x^{2} to get 4x^{2}.
4x^{2}+18+18=\left(x^{2}-9\right)\left(2\times 2+1\right)
Combine 12x and -12x to get 0.
4x^{2}+36=\left(x^{2}-9\right)\left(2\times 2+1\right)
Add 18 and 18 to get 36.
4x^{2}+36=\left(x^{2}-9\right)\left(4+1\right)
Multiply 2 and 2 to get 4.
4x^{2}+36=\left(x^{2}-9\right)\times 5
Add 4 and 1 to get 5.
4x^{2}+36=5x^{2}-45
Use the distributive property to multiply x^{2}-9 by 5.
4x^{2}+36-5x^{2}=-45
Subtract 5x^{2} from both sides.
-x^{2}+36=-45
Combine 4x^{2} and -5x^{2} to get -x^{2}.
-x^{2}+36+45=0
Add 45 to both sides.
-x^{2}+81=0
Add 36 and 45 to get 81.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 81}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and 81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 81}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\times 81}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{324}}{2\left(-1\right)}
Multiply 4 times 81.
x=\frac{0±18}{2\left(-1\right)}
Take the square root of 324.
x=\frac{0±18}{-2}
Multiply 2 times -1.
x=-9
Now solve the equation x=\frac{0±18}{-2} when ± is plus. Divide 18 by -2.
x=9
Now solve the equation x=\frac{0±18}{-2} when ± is minus. Divide -18 by -2.
x=-9 x=9
The equation is now solved.