Solve for b
b=\frac{5\left(x+3\right)}{x\left(3x+5\right)}
x\neq -\frac{5}{3}\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{5\left(b+5\right)\left(5b+1\right)}+5b-5}{6b}\text{; }x=-\frac{-\sqrt{5\left(b+5\right)\left(5b+1\right)}+5b-5}{6b}\text{, }&b\neq 0\\x=-3\text{, }&b=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{5\left(b+5\right)\left(5b+1\right)}+5b-5}{6b}\text{; }x=-\frac{-\sqrt{5\left(b+5\right)\left(5b+1\right)}+5b-5}{6b}\text{, }&\left(b\neq 0\text{ and }b\geq -\frac{1}{5}\right)\text{ or }b\leq -5\\x=-3\text{, }&b=0\end{matrix}\right.
Graph
Share
Copied to clipboard
5\left(x+3\right)=x\left(3x+5\right)b
Multiply both sides of the equation by 5x, the least common multiple of x,5.
5x+15=x\left(3x+5\right)b
Use the distributive property to multiply 5 by x+3.
5x+15=\left(3x^{2}+5x\right)b
Use the distributive property to multiply x by 3x+5.
5x+15=3x^{2}b+5xb
Use the distributive property to multiply 3x^{2}+5x by b.
3x^{2}b+5xb=5x+15
Swap sides so that all variable terms are on the left hand side.
\left(3x^{2}+5x\right)b=5x+15
Combine all terms containing b.
\frac{\left(3x^{2}+5x\right)b}{3x^{2}+5x}=\frac{5x+15}{3x^{2}+5x}
Divide both sides by 3x^{2}+5x.
b=\frac{5x+15}{3x^{2}+5x}
Dividing by 3x^{2}+5x undoes the multiplication by 3x^{2}+5x.
b=\frac{5\left(x+3\right)}{x\left(3x+5\right)}
Divide 15+5x by 3x^{2}+5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}