Solve for x
x = -\frac{45}{17} = -2\frac{11}{17} \approx -2.647058824
Graph
Share
Copied to clipboard
20\left(x+3\right)=3\left(x+5\right)
Variable x cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by 20\left(x+5\right), the least common multiple of x+5,20.
20x+60=3\left(x+5\right)
Use the distributive property to multiply 20 by x+3.
20x+60=3x+15
Use the distributive property to multiply 3 by x+5.
20x+60-3x=15
Subtract 3x from both sides.
17x+60=15
Combine 20x and -3x to get 17x.
17x=15-60
Subtract 60 from both sides.
17x=-45
Subtract 60 from 15 to get -45.
x=\frac{-45}{17}
Divide both sides by 17.
x=-\frac{45}{17}
Fraction \frac{-45}{17} can be rewritten as -\frac{45}{17} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}