Solve for x
x = -\frac{27}{7} = -3\frac{6}{7} \approx -3.857142857
Graph
Share
Copied to clipboard
\left(x+5\right)\left(x+3\right)=\left(x+4\right)\left(x-3\right)
Variable x cannot be equal to any of the values -5,-4 since division by zero is not defined. Multiply both sides of the equation by \left(x+4\right)\left(x+5\right), the least common multiple of x+4,x+5.
x^{2}+8x+15=\left(x+4\right)\left(x-3\right)
Use the distributive property to multiply x+5 by x+3 and combine like terms.
x^{2}+8x+15=x^{2}+x-12
Use the distributive property to multiply x+4 by x-3 and combine like terms.
x^{2}+8x+15-x^{2}=x-12
Subtract x^{2} from both sides.
8x+15=x-12
Combine x^{2} and -x^{2} to get 0.
8x+15-x=-12
Subtract x from both sides.
7x+15=-12
Combine 8x and -x to get 7x.
7x=-12-15
Subtract 15 from both sides.
7x=-27
Subtract 15 from -12 to get -27.
x=\frac{-27}{7}
Divide both sides by 7.
x=-\frac{27}{7}
Fraction \frac{-27}{7} can be rewritten as -\frac{27}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}