Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\times \frac{x+3}{6}=x\left(4x+6\right)+9x\left(-4\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9x, the least common multiple of x,9.
\frac{9\left(x+3\right)}{6}=x\left(4x+6\right)+9x\left(-4\right)
Express 9\times \frac{x+3}{6} as a single fraction.
\frac{9\left(x+3\right)}{6}=4x^{2}+6x+9x\left(-4\right)
Use the distributive property to multiply x by 4x+6.
\frac{9\left(x+3\right)}{6}=4x^{2}+6x-36x
Multiply 9 and -4 to get -36.
\frac{9\left(x+3\right)}{6}=4x^{2}-30x
Combine 6x and -36x to get -30x.
\frac{9x+27}{6}=4x^{2}-30x
Use the distributive property to multiply 9 by x+3.
\frac{3}{2}x+\frac{9}{2}=4x^{2}-30x
Divide each term of 9x+27 by 6 to get \frac{3}{2}x+\frac{9}{2}.
\frac{3}{2}x+\frac{9}{2}-4x^{2}=-30x
Subtract 4x^{2} from both sides.
\frac{3}{2}x+\frac{9}{2}-4x^{2}+30x=0
Add 30x to both sides.
\frac{63}{2}x+\frac{9}{2}-4x^{2}=0
Combine \frac{3}{2}x and 30x to get \frac{63}{2}x.
-4x^{2}+\frac{63}{2}x+\frac{9}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{63}{2}±\sqrt{\left(\frac{63}{2}\right)^{2}-4\left(-4\right)\times \frac{9}{2}}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, \frac{63}{2} for b, and \frac{9}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{63}{2}±\sqrt{\frac{3969}{4}-4\left(-4\right)\times \frac{9}{2}}}{2\left(-4\right)}
Square \frac{63}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{63}{2}±\sqrt{\frac{3969}{4}+16\times \frac{9}{2}}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\frac{63}{2}±\sqrt{\frac{3969}{4}+72}}{2\left(-4\right)}
Multiply 16 times \frac{9}{2}.
x=\frac{-\frac{63}{2}±\sqrt{\frac{4257}{4}}}{2\left(-4\right)}
Add \frac{3969}{4} to 72.
x=\frac{-\frac{63}{2}±\frac{3\sqrt{473}}{2}}{2\left(-4\right)}
Take the square root of \frac{4257}{4}.
x=\frac{-\frac{63}{2}±\frac{3\sqrt{473}}{2}}{-8}
Multiply 2 times -4.
x=\frac{3\sqrt{473}-63}{-8\times 2}
Now solve the equation x=\frac{-\frac{63}{2}±\frac{3\sqrt{473}}{2}}{-8} when ± is plus. Add -\frac{63}{2} to \frac{3\sqrt{473}}{2}.
x=\frac{63-3\sqrt{473}}{16}
Divide \frac{-63+3\sqrt{473}}{2} by -8.
x=\frac{-3\sqrt{473}-63}{-8\times 2}
Now solve the equation x=\frac{-\frac{63}{2}±\frac{3\sqrt{473}}{2}}{-8} when ± is minus. Subtract \frac{3\sqrt{473}}{2} from -\frac{63}{2}.
x=\frac{3\sqrt{473}+63}{16}
Divide \frac{-63-3\sqrt{473}}{2} by -8.
x=\frac{63-3\sqrt{473}}{16} x=\frac{3\sqrt{473}+63}{16}
The equation is now solved.
9\times \frac{x+3}{6}=x\left(4x+6\right)+9x\left(-4\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9x, the least common multiple of x,9.
\frac{9\left(x+3\right)}{6}=x\left(4x+6\right)+9x\left(-4\right)
Express 9\times \frac{x+3}{6} as a single fraction.
\frac{9\left(x+3\right)}{6}=4x^{2}+6x+9x\left(-4\right)
Use the distributive property to multiply x by 4x+6.
\frac{9\left(x+3\right)}{6}=4x^{2}+6x-36x
Multiply 9 and -4 to get -36.
\frac{9\left(x+3\right)}{6}=4x^{2}-30x
Combine 6x and -36x to get -30x.
\frac{9x+27}{6}=4x^{2}-30x
Use the distributive property to multiply 9 by x+3.
\frac{3}{2}x+\frac{9}{2}=4x^{2}-30x
Divide each term of 9x+27 by 6 to get \frac{3}{2}x+\frac{9}{2}.
\frac{3}{2}x+\frac{9}{2}-4x^{2}=-30x
Subtract 4x^{2} from both sides.
\frac{3}{2}x+\frac{9}{2}-4x^{2}+30x=0
Add 30x to both sides.
\frac{63}{2}x+\frac{9}{2}-4x^{2}=0
Combine \frac{3}{2}x and 30x to get \frac{63}{2}x.
\frac{63}{2}x-4x^{2}=-\frac{9}{2}
Subtract \frac{9}{2} from both sides. Anything subtracted from zero gives its negation.
-4x^{2}+\frac{63}{2}x=-\frac{9}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+\frac{63}{2}x}{-4}=-\frac{\frac{9}{2}}{-4}
Divide both sides by -4.
x^{2}+\frac{\frac{63}{2}}{-4}x=-\frac{\frac{9}{2}}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{63}{8}x=-\frac{\frac{9}{2}}{-4}
Divide \frac{63}{2} by -4.
x^{2}-\frac{63}{8}x=\frac{9}{8}
Divide -\frac{9}{2} by -4.
x^{2}-\frac{63}{8}x+\left(-\frac{63}{16}\right)^{2}=\frac{9}{8}+\left(-\frac{63}{16}\right)^{2}
Divide -\frac{63}{8}, the coefficient of the x term, by 2 to get -\frac{63}{16}. Then add the square of -\frac{63}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{63}{8}x+\frac{3969}{256}=\frac{9}{8}+\frac{3969}{256}
Square -\frac{63}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{63}{8}x+\frac{3969}{256}=\frac{4257}{256}
Add \frac{9}{8} to \frac{3969}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{63}{16}\right)^{2}=\frac{4257}{256}
Factor x^{2}-\frac{63}{8}x+\frac{3969}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{63}{16}\right)^{2}}=\sqrt{\frac{4257}{256}}
Take the square root of both sides of the equation.
x-\frac{63}{16}=\frac{3\sqrt{473}}{16} x-\frac{63}{16}=-\frac{3\sqrt{473}}{16}
Simplify.
x=\frac{3\sqrt{473}+63}{16} x=\frac{63-3\sqrt{473}}{16}
Add \frac{63}{16} to both sides of the equation.