Solve for x
x<\frac{5}{7}
Graph
Share
Copied to clipboard
5\left(x+3\right)>10x+4\times 4x
Multiply both sides of the equation by 20, the least common multiple of 4,2,5. Since 20 is positive, the inequality direction remains the same.
5x+15>10x+4\times 4x
Use the distributive property to multiply 5 by x+3.
5x+15>10x+16x
Multiply 4 and 4 to get 16.
5x+15>26x
Combine 10x and 16x to get 26x.
5x+15-26x>0
Subtract 26x from both sides.
-21x+15>0
Combine 5x and -26x to get -21x.
-21x>-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
x<\frac{-15}{-21}
Divide both sides by -21. Since -21 is negative, the inequality direction is changed.
x<\frac{5}{7}
Reduce the fraction \frac{-15}{-21} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}