Solve for x
x\geq -\frac{17}{7}
Graph
Share
Copied to clipboard
6\left(x+3\right)-4\left(1-x\right)\geq 3\left(3-x\right)+6\left(x-2\right)
Multiply both sides of the equation by 12, the least common multiple of 2,3,4. Since 12 is positive, the inequality direction remains the same.
6x+18-4\left(1-x\right)\geq 3\left(3-x\right)+6\left(x-2\right)
Use the distributive property to multiply 6 by x+3.
6x+18-4+4x\geq 3\left(3-x\right)+6\left(x-2\right)
Use the distributive property to multiply -4 by 1-x.
6x+14+4x\geq 3\left(3-x\right)+6\left(x-2\right)
Subtract 4 from 18 to get 14.
10x+14\geq 3\left(3-x\right)+6\left(x-2\right)
Combine 6x and 4x to get 10x.
10x+14\geq 9-3x+6\left(x-2\right)
Use the distributive property to multiply 3 by 3-x.
10x+14\geq 9-3x+6x-12
Use the distributive property to multiply 6 by x-2.
10x+14\geq 9+3x-12
Combine -3x and 6x to get 3x.
10x+14\geq -3+3x
Subtract 12 from 9 to get -3.
10x+14-3x\geq -3
Subtract 3x from both sides.
7x+14\geq -3
Combine 10x and -3x to get 7x.
7x\geq -3-14
Subtract 14 from both sides.
7x\geq -17
Subtract 14 from -3 to get -17.
x\geq -\frac{17}{7}
Divide both sides by 7. Since 7 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}