Solve for x
x = \frac{\sqrt{385} - 4}{3} \approx 5.207138957
x=\frac{-\sqrt{385}-4}{3}\approx -7.873805623
Graph
Share
Copied to clipboard
\left(x+3\right)\left(2x+4+x-5\right)=120
Multiply both sides of the equation by 2.
\left(x+3\right)\left(3x+4-5\right)=120
Combine 2x and x to get 3x.
\left(x+3\right)\left(3x-1\right)=120
Subtract 5 from 4 to get -1.
3x^{2}-x+9x-3=120
Apply the distributive property by multiplying each term of x+3 by each term of 3x-1.
3x^{2}+8x-3=120
Combine -x and 9x to get 8x.
3x^{2}+8x-3-120=0
Subtract 120 from both sides.
3x^{2}+8x-123=0
Subtract 120 from -3 to get -123.
x=\frac{-8±\sqrt{8^{2}-4\times 3\left(-123\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 8 for b, and -123 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 3\left(-123\right)}}{2\times 3}
Square 8.
x=\frac{-8±\sqrt{64-12\left(-123\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-8±\sqrt{64+1476}}{2\times 3}
Multiply -12 times -123.
x=\frac{-8±\sqrt{1540}}{2\times 3}
Add 64 to 1476.
x=\frac{-8±2\sqrt{385}}{2\times 3}
Take the square root of 1540.
x=\frac{-8±2\sqrt{385}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{385}-8}{6}
Now solve the equation x=\frac{-8±2\sqrt{385}}{6} when ± is plus. Add -8 to 2\sqrt{385}.
x=\frac{\sqrt{385}-4}{3}
Divide -8+2\sqrt{385} by 6.
x=\frac{-2\sqrt{385}-8}{6}
Now solve the equation x=\frac{-8±2\sqrt{385}}{6} when ± is minus. Subtract 2\sqrt{385} from -8.
x=\frac{-\sqrt{385}-4}{3}
Divide -8-2\sqrt{385} by 6.
x=\frac{\sqrt{385}-4}{3} x=\frac{-\sqrt{385}-4}{3}
The equation is now solved.
\left(x+3\right)\left(2x+4+x-5\right)=120
Multiply both sides of the equation by 2.
\left(x+3\right)\left(3x+4-5\right)=120
Combine 2x and x to get 3x.
\left(x+3\right)\left(3x-1\right)=120
Subtract 5 from 4 to get -1.
3x^{2}-x+9x-3=120
Apply the distributive property by multiplying each term of x+3 by each term of 3x-1.
3x^{2}+8x-3=120
Combine -x and 9x to get 8x.
3x^{2}+8x=120+3
Add 3 to both sides.
3x^{2}+8x=123
Add 120 and 3 to get 123.
\frac{3x^{2}+8x}{3}=\frac{123}{3}
Divide both sides by 3.
x^{2}+\frac{8}{3}x=\frac{123}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{8}{3}x=41
Divide 123 by 3.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=41+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{3}x+\frac{16}{9}=41+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{385}{9}
Add 41 to \frac{16}{9}.
\left(x+\frac{4}{3}\right)^{2}=\frac{385}{9}
Factor x^{2}+\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{385}{9}}
Take the square root of both sides of the equation.
x+\frac{4}{3}=\frac{\sqrt{385}}{3} x+\frac{4}{3}=-\frac{\sqrt{385}}{3}
Simplify.
x=\frac{\sqrt{385}-4}{3} x=\frac{-\sqrt{385}-4}{3}
Subtract \frac{4}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}