Evaluate
\frac{3y-x}{x^{2}-y^{2}}
Expand
-\frac{3y-x}{y^{2}-x^{2}}
Share
Copied to clipboard
\frac{x+2y}{\left(x+y\right)\left(x-y\right)}+\frac{3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Factor x^{2}-y^{2}. Factor y^{2}-x^{2}.
\frac{-\left(x+2y\right)}{\left(x+y\right)\left(-x+y\right)}+\frac{3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and \left(x+y\right)\left(-x+y\right) is \left(x+y\right)\left(-x+y\right). Multiply \frac{x+2y}{\left(x+y\right)\left(x-y\right)} times \frac{-1}{-1}.
\frac{-\left(x+2y\right)+3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Since \frac{-\left(x+2y\right)}{\left(x+y\right)\left(-x+y\right)} and \frac{3y-x}{\left(x+y\right)\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-x-2y+3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Do the multiplications in -\left(x+2y\right)+3y-x.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Combine like terms in -x-2y+3y-x.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{\left(x+y\right)\left(x-y\right)}
Factor x^{2}-y^{2}.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{-\left(3x-4y\right)}{\left(x+y\right)\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(-x+y\right) and \left(x+y\right)\left(x-y\right) is \left(x+y\right)\left(-x+y\right). Multiply \frac{3x-4y}{\left(x+y\right)\left(x-y\right)} times \frac{-1}{-1}.
\frac{-2x+y-\left(-\left(3x-4y\right)\right)}{\left(x+y\right)\left(-x+y\right)}
Since \frac{-2x+y}{\left(x+y\right)\left(-x+y\right)} and \frac{-\left(3x-4y\right)}{\left(x+y\right)\left(-x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x+y+3x-4y}{\left(x+y\right)\left(-x+y\right)}
Do the multiplications in -2x+y-\left(-\left(3x-4y\right)\right).
\frac{x-3y}{\left(x+y\right)\left(-x+y\right)}
Combine like terms in -2x+y+3x-4y.
\frac{x-3y}{-x^{2}+y^{2}}
Expand \left(x+y\right)\left(-x+y\right).
\frac{x+2y}{\left(x+y\right)\left(x-y\right)}+\frac{3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Factor x^{2}-y^{2}. Factor y^{2}-x^{2}.
\frac{-\left(x+2y\right)}{\left(x+y\right)\left(-x+y\right)}+\frac{3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and \left(x+y\right)\left(-x+y\right) is \left(x+y\right)\left(-x+y\right). Multiply \frac{x+2y}{\left(x+y\right)\left(x-y\right)} times \frac{-1}{-1}.
\frac{-\left(x+2y\right)+3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Since \frac{-\left(x+2y\right)}{\left(x+y\right)\left(-x+y\right)} and \frac{3y-x}{\left(x+y\right)\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-x-2y+3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Do the multiplications in -\left(x+2y\right)+3y-x.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Combine like terms in -x-2y+3y-x.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{\left(x+y\right)\left(x-y\right)}
Factor x^{2}-y^{2}.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{-\left(3x-4y\right)}{\left(x+y\right)\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(-x+y\right) and \left(x+y\right)\left(x-y\right) is \left(x+y\right)\left(-x+y\right). Multiply \frac{3x-4y}{\left(x+y\right)\left(x-y\right)} times \frac{-1}{-1}.
\frac{-2x+y-\left(-\left(3x-4y\right)\right)}{\left(x+y\right)\left(-x+y\right)}
Since \frac{-2x+y}{\left(x+y\right)\left(-x+y\right)} and \frac{-\left(3x-4y\right)}{\left(x+y\right)\left(-x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x+y+3x-4y}{\left(x+y\right)\left(-x+y\right)}
Do the multiplications in -2x+y-\left(-\left(3x-4y\right)\right).
\frac{x-3y}{\left(x+y\right)\left(-x+y\right)}
Combine like terms in -2x+y+3x-4y.
\frac{x-3y}{-x^{2}+y^{2}}
Expand \left(x+y\right)\left(-x+y\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}