Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{x+2y}{\left(x+y\right)\left(x-y\right)}+\frac{3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Factor x^{2}-y^{2}. Factor y^{2}-x^{2}.
\frac{-\left(x+2y\right)}{\left(x+y\right)\left(-x+y\right)}+\frac{3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and \left(x+y\right)\left(-x+y\right) is \left(x+y\right)\left(-x+y\right). Multiply \frac{x+2y}{\left(x+y\right)\left(x-y\right)} times \frac{-1}{-1}.
\frac{-\left(x+2y\right)+3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Since \frac{-\left(x+2y\right)}{\left(x+y\right)\left(-x+y\right)} and \frac{3y-x}{\left(x+y\right)\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-x-2y+3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Do the multiplications in -\left(x+2y\right)+3y-x.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Combine like terms in -x-2y+3y-x.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{\left(x+y\right)\left(x-y\right)}
Factor x^{2}-y^{2}.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{-\left(3x-4y\right)}{\left(x+y\right)\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(-x+y\right) and \left(x+y\right)\left(x-y\right) is \left(x+y\right)\left(-x+y\right). Multiply \frac{3x-4y}{\left(x+y\right)\left(x-y\right)} times \frac{-1}{-1}.
\frac{-2x+y-\left(-\left(3x-4y\right)\right)}{\left(x+y\right)\left(-x+y\right)}
Since \frac{-2x+y}{\left(x+y\right)\left(-x+y\right)} and \frac{-\left(3x-4y\right)}{\left(x+y\right)\left(-x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x+y+3x-4y}{\left(x+y\right)\left(-x+y\right)}
Do the multiplications in -2x+y-\left(-\left(3x-4y\right)\right).
\frac{x-3y}{\left(x+y\right)\left(-x+y\right)}
Combine like terms in -2x+y+3x-4y.
\frac{x-3y}{-x^{2}+y^{2}}
Expand \left(x+y\right)\left(-x+y\right).
\frac{x+2y}{\left(x+y\right)\left(x-y\right)}+\frac{3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Factor x^{2}-y^{2}. Factor y^{2}-x^{2}.
\frac{-\left(x+2y\right)}{\left(x+y\right)\left(-x+y\right)}+\frac{3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and \left(x+y\right)\left(-x+y\right) is \left(x+y\right)\left(-x+y\right). Multiply \frac{x+2y}{\left(x+y\right)\left(x-y\right)} times \frac{-1}{-1}.
\frac{-\left(x+2y\right)+3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Since \frac{-\left(x+2y\right)}{\left(x+y\right)\left(-x+y\right)} and \frac{3y-x}{\left(x+y\right)\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-x-2y+3y-x}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Do the multiplications in -\left(x+2y\right)+3y-x.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{x^{2}-y^{2}}
Combine like terms in -x-2y+3y-x.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{3x-4y}{\left(x+y\right)\left(x-y\right)}
Factor x^{2}-y^{2}.
\frac{-2x+y}{\left(x+y\right)\left(-x+y\right)}-\frac{-\left(3x-4y\right)}{\left(x+y\right)\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(-x+y\right) and \left(x+y\right)\left(x-y\right) is \left(x+y\right)\left(-x+y\right). Multiply \frac{3x-4y}{\left(x+y\right)\left(x-y\right)} times \frac{-1}{-1}.
\frac{-2x+y-\left(-\left(3x-4y\right)\right)}{\left(x+y\right)\left(-x+y\right)}
Since \frac{-2x+y}{\left(x+y\right)\left(-x+y\right)} and \frac{-\left(3x-4y\right)}{\left(x+y\right)\left(-x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x+y+3x-4y}{\left(x+y\right)\left(-x+y\right)}
Do the multiplications in -2x+y-\left(-\left(3x-4y\right)\right).
\frac{x-3y}{\left(x+y\right)\left(-x+y\right)}
Combine like terms in -2x+y+3x-4y.
\frac{x-3y}{-x^{2}+y^{2}}
Expand \left(x+y\right)\left(-x+y\right).