Solve for a
a=x-3
x\neq 2
Solve for x
x=a+3
a\neq -1
Graph
Share
Copied to clipboard
x+2a=3\left(x-2\right)
Multiply both sides of the equation by x-2.
x+2a=3x-6
Use the distributive property to multiply 3 by x-2.
2a=3x-6-x
Subtract x from both sides.
2a=2x-6
Combine 3x and -x to get 2x.
\frac{2a}{2}=\frac{2x-6}{2}
Divide both sides by 2.
a=\frac{2x-6}{2}
Dividing by 2 undoes the multiplication by 2.
a=x-3
Divide -6+2x by 2.
x+2a=3\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
x+2a=3x-6
Use the distributive property to multiply 3 by x-2.
x+2a-3x=-6
Subtract 3x from both sides.
-2x+2a=-6
Combine x and -3x to get -2x.
-2x=-6-2a
Subtract 2a from both sides.
-2x=-2a-6
The equation is in standard form.
\frac{-2x}{-2}=\frac{-2a-6}{-2}
Divide both sides by -2.
x=\frac{-2a-6}{-2}
Dividing by -2 undoes the multiplication by -2.
x=a+3
Divide -6-2a by -2.
x=a+3\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}