Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-3x+2-1-8x^{-2}}{1+4x^{-1}+3x^{-2}}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Combine x and -4x to get -3x.
\frac{-3x+1-8x^{-2}}{1+4x^{-1}+3x^{-2}}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Subtract 1 from 2 to get 1.
\frac{-x^{-2}\left(3x^{3}-x^{2}+8\right)}{x^{-2}\left(x+1\right)\left(x+3\right)}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Factor the expressions that are not already factored in \frac{-3x+1-8x^{-2}}{1+4x^{-1}+3x^{-2}}.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Cancel out x^{-2} in both numerator and denominator.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{\frac{1}{x}\left(x+1\right)^{2}}{\frac{1}{x}\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{x+2+x^{-1}}{x-4x^{-1}}.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+2\right)}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{-\left(3x^{3}-x^{2}+8\right)\left(x+1\right)^{2}}{\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(x+2\right)}
Multiply \frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)} times \frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(x+1\right)\left(3x^{3}-x^{2}+8\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Cancel out x+1 in both numerator and denominator.
\frac{\left(-x-1\right)\left(3x^{3}-x^{2}+8\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Use the distributive property to multiply -1 by x+1.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Use the distributive property to multiply -x-1 by 3x^{3}-x^{2}+8 and combine like terms.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{\left(x^{2}-4\right)\left(x+3\right)}
Use the distributive property to multiply x-2 by x+2 and combine like terms.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{x^{3}+3x^{2}-4x-12}
Use the distributive property to multiply x^{2}-4 by x+3.
\frac{-3x+2-1-8x^{-2}}{1+4x^{-1}+3x^{-2}}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Combine x and -4x to get -3x.
\frac{-3x+1-8x^{-2}}{1+4x^{-1}+3x^{-2}}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Subtract 1 from 2 to get 1.
\frac{-x^{-2}\left(3x^{3}-x^{2}+8\right)}{x^{-2}\left(x+1\right)\left(x+3\right)}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Factor the expressions that are not already factored in \frac{-3x+1-8x^{-2}}{1+4x^{-1}+3x^{-2}}.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Cancel out x^{-2} in both numerator and denominator.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{\frac{1}{x}\left(x+1\right)^{2}}{\frac{1}{x}\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{x+2+x^{-1}}{x-4x^{-1}}.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+2\right)}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{-\left(3x^{3}-x^{2}+8\right)\left(x+1\right)^{2}}{\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(x+2\right)}
Multiply \frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)} times \frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(x+1\right)\left(3x^{3}-x^{2}+8\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Cancel out x+1 in both numerator and denominator.
\frac{\left(-x-1\right)\left(3x^{3}-x^{2}+8\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Use the distributive property to multiply -1 by x+1.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Use the distributive property to multiply -x-1 by 3x^{3}-x^{2}+8 and combine like terms.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{\left(x^{2}-4\right)\left(x+3\right)}
Use the distributive property to multiply x-2 by x+2 and combine like terms.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{x^{3}+3x^{2}-4x-12}
Use the distributive property to multiply x^{2}-4 by x+3.