Evaluate
-\frac{\left(x+1\right)\left(3x^{3}-x^{2}+8\right)}{\left(x+3\right)\left(x^{2}-4\right)}
Expand
\frac{-3x^{4}-2x^{3}+x^{2}-8x-8}{\left(x+3\right)\left(x^{2}-4\right)}
Graph
Share
Copied to clipboard
\frac{-3x+2-1-8x^{-2}}{1+4x^{-1}+3x^{-2}}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Combine x and -4x to get -3x.
\frac{-3x+1-8x^{-2}}{1+4x^{-1}+3x^{-2}}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Subtract 1 from 2 to get 1.
\frac{-x^{-2}\left(3x^{3}-x^{2}+8\right)}{x^{-2}\left(x+1\right)\left(x+3\right)}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Factor the expressions that are not already factored in \frac{-3x+1-8x^{-2}}{1+4x^{-1}+3x^{-2}}.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Cancel out x^{-2} in both numerator and denominator.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{\frac{1}{x}\left(x+1\right)^{2}}{\frac{1}{x}\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{x+2+x^{-1}}{x-4x^{-1}}.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+2\right)}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{-\left(3x^{3}-x^{2}+8\right)\left(x+1\right)^{2}}{\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(x+2\right)}
Multiply \frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)} times \frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(x+1\right)\left(3x^{3}-x^{2}+8\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Cancel out x+1 in both numerator and denominator.
\frac{\left(-x-1\right)\left(3x^{3}-x^{2}+8\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Use the distributive property to multiply -1 by x+1.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Use the distributive property to multiply -x-1 by 3x^{3}-x^{2}+8 and combine like terms.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{\left(x^{2}-4\right)\left(x+3\right)}
Use the distributive property to multiply x-2 by x+2 and combine like terms.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{x^{3}+3x^{2}-4x-12}
Use the distributive property to multiply x^{2}-4 by x+3.
\frac{-3x+2-1-8x^{-2}}{1+4x^{-1}+3x^{-2}}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Combine x and -4x to get -3x.
\frac{-3x+1-8x^{-2}}{1+4x^{-1}+3x^{-2}}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Subtract 1 from 2 to get 1.
\frac{-x^{-2}\left(3x^{3}-x^{2}+8\right)}{x^{-2}\left(x+1\right)\left(x+3\right)}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Factor the expressions that are not already factored in \frac{-3x+1-8x^{-2}}{1+4x^{-1}+3x^{-2}}.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{x+2+x^{-1}}{x-4x^{-1}}
Cancel out x^{-2} in both numerator and denominator.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{\frac{1}{x}\left(x+1\right)^{2}}{\frac{1}{x}\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{x+2+x^{-1}}{x-4x^{-1}}.
\frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)}\times \frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+2\right)}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{-\left(3x^{3}-x^{2}+8\right)\left(x+1\right)^{2}}{\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(x+2\right)}
Multiply \frac{-\left(3x^{3}-x^{2}+8\right)}{\left(x+1\right)\left(x+3\right)} times \frac{\left(x+1\right)^{2}}{\left(x-2\right)\left(x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(x+1\right)\left(3x^{3}-x^{2}+8\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Cancel out x+1 in both numerator and denominator.
\frac{\left(-x-1\right)\left(3x^{3}-x^{2}+8\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Use the distributive property to multiply -1 by x+1.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Use the distributive property to multiply -x-1 by 3x^{3}-x^{2}+8 and combine like terms.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{\left(x^{2}-4\right)\left(x+3\right)}
Use the distributive property to multiply x-2 by x+2 and combine like terms.
\frac{-3x^{4}-2x^{3}-8x+x^{2}-8}{x^{3}+3x^{2}-4x-12}
Use the distributive property to multiply x^{2}-4 by x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}