Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(5x+10\right)\left(x+2\right)+\left(5x-10\right)\left(x-2\right)=26\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-2\right)\left(x+2\right), the least common multiple of x-2,x+2,5.
5x^{2}+20x+20+\left(5x-10\right)\left(x-2\right)=26\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 5x+10 by x+2 and combine like terms.
5x^{2}+20x+20+5x^{2}-20x+20=26\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 5x-10 by x-2 and combine like terms.
10x^{2}+20x+20-20x+20=26\left(x-2\right)\left(x+2\right)
Combine 5x^{2} and 5x^{2} to get 10x^{2}.
10x^{2}+20+20=26\left(x-2\right)\left(x+2\right)
Combine 20x and -20x to get 0.
10x^{2}+40=26\left(x-2\right)\left(x+2\right)
Add 20 and 20 to get 40.
10x^{2}+40=\left(26x-52\right)\left(x+2\right)
Use the distributive property to multiply 26 by x-2.
10x^{2}+40=26x^{2}-104
Use the distributive property to multiply 26x-52 by x+2 and combine like terms.
10x^{2}+40-26x^{2}=-104
Subtract 26x^{2} from both sides.
-16x^{2}+40=-104
Combine 10x^{2} and -26x^{2} to get -16x^{2}.
-16x^{2}=-104-40
Subtract 40 from both sides.
-16x^{2}=-144
Subtract 40 from -104 to get -144.
x^{2}=\frac{-144}{-16}
Divide both sides by -16.
x^{2}=9
Divide -144 by -16 to get 9.
x=3 x=-3
Take the square root of both sides of the equation.
\left(5x+10\right)\left(x+2\right)+\left(5x-10\right)\left(x-2\right)=26\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-2\right)\left(x+2\right), the least common multiple of x-2,x+2,5.
5x^{2}+20x+20+\left(5x-10\right)\left(x-2\right)=26\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 5x+10 by x+2 and combine like terms.
5x^{2}+20x+20+5x^{2}-20x+20=26\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply 5x-10 by x-2 and combine like terms.
10x^{2}+20x+20-20x+20=26\left(x-2\right)\left(x+2\right)
Combine 5x^{2} and 5x^{2} to get 10x^{2}.
10x^{2}+20+20=26\left(x-2\right)\left(x+2\right)
Combine 20x and -20x to get 0.
10x^{2}+40=26\left(x-2\right)\left(x+2\right)
Add 20 and 20 to get 40.
10x^{2}+40=\left(26x-52\right)\left(x+2\right)
Use the distributive property to multiply 26 by x-2.
10x^{2}+40=26x^{2}-104
Use the distributive property to multiply 26x-52 by x+2 and combine like terms.
10x^{2}+40-26x^{2}=-104
Subtract 26x^{2} from both sides.
-16x^{2}+40=-104
Combine 10x^{2} and -26x^{2} to get -16x^{2}.
-16x^{2}+40+104=0
Add 104 to both sides.
-16x^{2}+144=0
Add 40 and 104 to get 144.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)\times 144}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and 144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-16\right)\times 144}}{2\left(-16\right)}
Square 0.
x=\frac{0±\sqrt{64\times 144}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{0±\sqrt{9216}}{2\left(-16\right)}
Multiply 64 times 144.
x=\frac{0±96}{2\left(-16\right)}
Take the square root of 9216.
x=\frac{0±96}{-32}
Multiply 2 times -16.
x=-3
Now solve the equation x=\frac{0±96}{-32} when ± is plus. Divide 96 by -32.
x=3
Now solve the equation x=\frac{0±96}{-32} when ± is minus. Divide -96 by -32.
x=-3 x=3
The equation is now solved.